aboutsummaryrefslogtreecommitdiff
path: root/spectroscopy
diff options
context:
space:
mode:
authorBlaise Thompson <blaise@untzag.com>2018-04-07 19:02:17 -0500
committerBlaise Thompson <blaise@untzag.com>2018-04-07 19:02:17 -0500
commitae22867cdf4156b9a064bafe45ac62830d8aa348 (patch)
tree905798fdaa46c029f5aad9fddc857a1196a3b140 /spectroscopy
parent80baee9f019af151743b3d6e49cddaa44656ac7d (diff)
2018-04-07 19:02
Diffstat (limited to 'spectroscopy')
-rw-r--r--spectroscopy/auto/chapter.el3
-rw-r--r--spectroscopy/chapter.tex59
2 files changed, 45 insertions, 17 deletions
diff --git a/spectroscopy/auto/chapter.el b/spectroscopy/auto/chapter.el
index f8550da..6fd7dd7 100644
--- a/spectroscopy/auto/chapter.el
+++ b/spectroscopy/auto/chapter.el
@@ -3,6 +3,7 @@
(lambda ()
(LaTeX-add-labels
"cha:spc"
- "spc:fig:decongestion"))
+ "spc:fig:decongestion"
+ "spc:fig:power_curves"))
:latex)
diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex
index b07a407..eb41d10 100644
--- a/spectroscopy/chapter.tex
+++ b/spectroscopy/chapter.tex
@@ -1,15 +1,3 @@
-% TODO: discuss and cite CerulloGiulio2003.000
-% TODO: discuss and cite BrownEmilyJ1999.000
-% TODO: cite and discuss Sheik-Bahae 1990 (first z-scan)
-% Modeling of Transient Absorption Spectra in Exciton–Charge-Transfer Systems 10.1021/acs.jpcb.6b09858
-% TODO: Multidimensional Spectral Fingerprints of a New Family of Coherent Analytical Spectroscopies
-% TODO: https://www.nature.com/articles/nature21425
-% TODO: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.4793
-% TODO: https://www.nature.com/articles/ncomms2405
-% TODO: https://www.nature.com/articles/ncomms2405
-% TODO: https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b02693
-% TODO: http://journals.sagepub.com/doi/10.1177/0003702816669730
-
\chapter{Spectroscopy} \label{cha:spc}
\begin{dquote}
@@ -144,8 +132,7 @@ WMEL diagrams are drawn using the following rules. %
\item Bra-side interactions are represented with dashed arrows.
\item Output is represented as a solid wavy line.
\end{denumerate}
-
-Representative WMELs can be found in Figures [xxxxxx]. %
+WMELs can be found throughout this dissertation. %
\section{Types of spectroscopy} % ================================================================
@@ -267,7 +254,7 @@ Besides the aforementioned phase information, probably the biggest difference be
and homodyne-detected experiments is their scaling with oscillator number density, $N$. %
In all heterodyne spectroscopies, signal goes linearly, as $N$. %
If the number of oscillators is doubled, the signal doubles. %
-In all homodyne spectroscopies, signal goes as $N^2$. %
+In all homodyne spectroscopies, signal goes as $N^2$. %
If the number of oscillators is doubled, the signal goes up by four times. %
This is what we mean when we say that homodyne signals are ``intensity level'' and heterodyne
signals are ``amplitude level''. %
@@ -292,10 +279,50 @@ In this section I introduce the key components of the MR-CMDS instrument. %
\subsection{LASER} % -----------------------------------------------------------------------------
-% TODO: add reference to MaimanTheodore.000 (ruby laser)
+Light Amplified by Stimulated Emission of Radiation (LASER) light sources are absolutely crucial
+components of the modern MR-CMDS instrument. %
+The first laser was built in 1960 by \textcite{MaimanTheodore1960a}, and pulsed lasers were
+invented soon after [CITE]. %
+Today, ultrafast light sources are relatively cheap and reliable. %
+Our SpectraPhysics ``Tsunami'' oscillator uses passive Kerr-lens mode-locking to generate $\sim$35
+fs seed pulses at $\sim$80 MHz (one pulse every 12.5 nanoseconds). \cite{Tsunami} %
+This seed is split and fed into two 1 KHz amplifiers, a picosecond ``Spitfire Ace''
+\cite{SpitfireAce} and a femtosecond ``Spitfire Pro'' \cite{SpitfirePro}. %
+These amplifiers each output several watts of ultrafast pulses at 1 KHz (one pulse per
+millisecond). %
\subsection{Optical parametric amplifiers} % -----------------------------------------------------
+Optical Parametric Amplifiers (OPAs) are arguably the most crucial component of modern MR-CMDS, as
+they provide the frequency tunable light sources that we require. \cite{CerulloGiulio2003a} %
+OPAs provide tunability through three-wave sum and difference frequency generation processes. %
+``Fundamental'' tunability is achieved by splitting the 800 nm photons into two lower energy
+photons, with a splitting ratio determined by motorized optics. %
+These split photons are called ``signal'' and ``idler'', with signal being the higher energy and
+idler the lower energy photon. %
+
+% TODO: paragraph about phase matching conditions and polarization
+
+Signal and idler are then either used directly, or amplified through sum or difference frequency
+processes to provide broadband tuneability. %
+All available optical processes for the TOPAS-C OPAs \cite{TOPAS-C} used on the femtosecond table
+are shown in \autoref{spc:fig:power_curves}. %
+
+On the picosecond table we have three separate kinds of OPAs, including one TOPAS-800
+\cite{TOPAS-800} and two OPA-800 models that have been modified with precision micro control
+\cite{PMC} servo motors to provide automated tunability. %
+
+\begin{figure}
+ \caption[TOPAS-C optical processes]{
+ CAPTION TODO.
+ }
+ \label{spc:fig:power_curves}
+\end{figure}
+
\subsection{Delay stages} % ----------------------------------------------------------------------
+Delay stages are simple, one-motor devices which...
+
\subsection{Spectrometers} % ---------------------------------------------------------------------
+
+Spectrometers... \ No newline at end of file