From ae22867cdf4156b9a064bafe45ac62830d8aa348 Mon Sep 17 00:00:00 2001 From: Blaise Thompson Date: Sat, 7 Apr 2018 19:02:17 -0500 Subject: 2018-04-07 19:02 --- spectroscopy/auto/chapter.el | 3 ++- spectroscopy/chapter.tex | 59 ++++++++++++++++++++++++++++++++------------ 2 files changed, 45 insertions(+), 17 deletions(-) (limited to 'spectroscopy') diff --git a/spectroscopy/auto/chapter.el b/spectroscopy/auto/chapter.el index f8550da..6fd7dd7 100644 --- a/spectroscopy/auto/chapter.el +++ b/spectroscopy/auto/chapter.el @@ -3,6 +3,7 @@ (lambda () (LaTeX-add-labels "cha:spc" - "spc:fig:decongestion")) + "spc:fig:decongestion" + "spc:fig:power_curves")) :latex) diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex index b07a407..eb41d10 100644 --- a/spectroscopy/chapter.tex +++ b/spectroscopy/chapter.tex @@ -1,15 +1,3 @@ -% TODO: discuss and cite CerulloGiulio2003.000 -% TODO: discuss and cite BrownEmilyJ1999.000 -% TODO: cite and discuss Sheik-Bahae 1990 (first z-scan) -% Modeling of Transient Absorption Spectra in Exciton–Charge-Transfer Systems 10.1021/acs.jpcb.6b09858 -% TODO: Multidimensional Spectral Fingerprints of a New Family of Coherent Analytical Spectroscopies -% TODO: https://www.nature.com/articles/nature21425 -% TODO: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.4793 -% TODO: https://www.nature.com/articles/ncomms2405 -% TODO: https://www.nature.com/articles/ncomms2405 -% TODO: https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b02693 -% TODO: http://journals.sagepub.com/doi/10.1177/0003702816669730 - \chapter{Spectroscopy} \label{cha:spc} \begin{dquote} @@ -144,8 +132,7 @@ WMEL diagrams are drawn using the following rules. % \item Bra-side interactions are represented with dashed arrows. \item Output is represented as a solid wavy line. \end{denumerate} - -Representative WMELs can be found in Figures [xxxxxx]. % +WMELs can be found throughout this dissertation. % \section{Types of spectroscopy} % ================================================================ @@ -267,7 +254,7 @@ Besides the aforementioned phase information, probably the biggest difference be and homodyne-detected experiments is their scaling with oscillator number density, $N$. % In all heterodyne spectroscopies, signal goes linearly, as $N$. % If the number of oscillators is doubled, the signal doubles. % -In all homodyne spectroscopies, signal goes as $N^2$. % +In all homodyne spectroscopies, signal goes as $N^2$. % If the number of oscillators is doubled, the signal goes up by four times. % This is what we mean when we say that homodyne signals are ``intensity level'' and heterodyne signals are ``amplitude level''. % @@ -292,10 +279,50 @@ In this section I introduce the key components of the MR-CMDS instrument. % \subsection{LASER} % ----------------------------------------------------------------------------- -% TODO: add reference to MaimanTheodore.000 (ruby laser) +Light Amplified by Stimulated Emission of Radiation (LASER) light sources are absolutely crucial +components of the modern MR-CMDS instrument. % +The first laser was built in 1960 by \textcite{MaimanTheodore1960a}, and pulsed lasers were +invented soon after [CITE]. % +Today, ultrafast light sources are relatively cheap and reliable. % +Our SpectraPhysics ``Tsunami'' oscillator uses passive Kerr-lens mode-locking to generate $\sim$35 +fs seed pulses at $\sim$80 MHz (one pulse every 12.5 nanoseconds). \cite{Tsunami} % +This seed is split and fed into two 1 KHz amplifiers, a picosecond ``Spitfire Ace'' +\cite{SpitfireAce} and a femtosecond ``Spitfire Pro'' \cite{SpitfirePro}. % +These amplifiers each output several watts of ultrafast pulses at 1 KHz (one pulse per +millisecond). % \subsection{Optical parametric amplifiers} % ----------------------------------------------------- +Optical Parametric Amplifiers (OPAs) are arguably the most crucial component of modern MR-CMDS, as +they provide the frequency tunable light sources that we require. \cite{CerulloGiulio2003a} % +OPAs provide tunability through three-wave sum and difference frequency generation processes. % +``Fundamental'' tunability is achieved by splitting the 800 nm photons into two lower energy +photons, with a splitting ratio determined by motorized optics. % +These split photons are called ``signal'' and ``idler'', with signal being the higher energy and +idler the lower energy photon. % + +% TODO: paragraph about phase matching conditions and polarization + +Signal and idler are then either used directly, or amplified through sum or difference frequency +processes to provide broadband tuneability. % +All available optical processes for the TOPAS-C OPAs \cite{TOPAS-C} used on the femtosecond table +are shown in \autoref{spc:fig:power_curves}. % + +On the picosecond table we have three separate kinds of OPAs, including one TOPAS-800 +\cite{TOPAS-800} and two OPA-800 models that have been modified with precision micro control +\cite{PMC} servo motors to provide automated tunability. % + +\begin{figure} + \caption[TOPAS-C optical processes]{ + CAPTION TODO. + } + \label{spc:fig:power_curves} +\end{figure} + \subsection{Delay stages} % ---------------------------------------------------------------------- +Delay stages are simple, one-motor devices which... + \subsection{Spectrometers} % --------------------------------------------------------------------- + +Spectrometers... \ No newline at end of file -- cgit v1.2.3