aboutsummaryrefslogtreecommitdiff
path: root/digital-driver/firmware/TinyWireS/examples
diff options
context:
space:
mode:
authorPhilip Lampkin <plampkin@chem.wisc.edu>2021-04-24 12:07:04 -0500
committerPhilip Lampkin <plampkin@chem.wisc.edu>2021-04-24 12:07:04 -0500
commit40ab1463c3da0c844eedba5c5f52d5ef8af322c4 (patch)
treed7984802dbe72f0d203d7b86372ca355ac0c833d /digital-driver/firmware/TinyWireS/examples
parentd6df6a65cf04da7ed29e8f09c0bf14c8b2cfb2e6 (diff)
terminology update
Diffstat (limited to 'digital-driver/firmware/TinyWireS/examples')
-rw-r--r--digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Master/TinyWireS_Stress_Master.ino184
-rw-r--r--digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Slave/TinyWireS_Stress_Slave.ino143
-rw-r--r--digital-driver/firmware/TinyWireS/examples/attiny85_i2c_analog/attiny85_i2c_analog.ino210
-rw-r--r--digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave/attiny85_i2c_slave.ino152
-rw-r--r--digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave_task/attiny85_i2c_slave_task.ino246
5 files changed, 0 insertions, 935 deletions
diff --git a/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Master/TinyWireS_Stress_Master.ino b/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Master/TinyWireS_Stress_Master.ino
deleted file mode 100644
index d50adb7..0000000
--- a/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Master/TinyWireS_Stress_Master.ino
+++ /dev/null
@@ -1,184 +0,0 @@
-// ---------------------------------
-// Stress test program/example for TinyWireS I2C library.
-// Run this master program on the Arduino Uno R3.
-// Run the other slave program on the Attiny.
-// ---------------------------------
-// Written by Scott Hartog, 2/6/2016
-// This is the I2C master program which runs on on a regular Arduino
-// (not a AtTiny). This program uses the regular Wire library from the Arduino IDE.
-//
-// It performs these steps in a loop:
-// 1. picks a random number of bytes between 1 and 12
-// 2. sends that many bytes of random data to the AtTiny slave within
-// a single Wire.beginTransmission() / Wire.write() / Wire.endTransmission() set
-// 3. reads that same number of bytes back with a single Wire.requestFrom() call
-// 4. compares the received data to the originally transmitted data
-// 5. displays the number of requests, number of requests with mismatches,
-// and enough of the data so that the operator can tell it's working.
-//
-#include <Wire.h>
-
-// BREADBOARD SETUP:
-// Arduino Uno R3 (D18/SDA) = I2C SDA
-// connect to SDA on slave with external pull-up (~4.7K)
-// Arduino Uno R3 (D19/SCL) = I2C SCL
-// connect to SCL on slave with external pull-up (~4.7K)
-// Arduino Uno R3 (D2)
-// connect to !RST on slave
-// Can alternatively connect !RST on slave to the Ardiuno "!RESET" pin
-
-#define I2C_SLAVE_ADDR 0x26 // i2c slave address (38, 0x26)
-
-#if defined(ESP8266)
- // pins that work for Monkey Board ESP8266 12-E
- // SCL=5, SDA=4
- #define SLAVE_RESET_PIN 2
- #define ALL_OK_LED_PIN 16
- #define OK_LED_PIN 14
- #define ERROR_LED_PIN 13
-#else
- // pins that work for Micro Pro, Uno, Mega 2560
- // reference documentation for SCL and SDA pin locations
- // Uno SDA=D18, SCL=D19
- #define SLAVE_RESET_PIN 6
- #define ALL_OK_LED_PIN 9
- #define OK_LED_PIN 7
- #define ERROR_LED_PIN 8
-#endif
-
-uint16_t count = 0; // total number of passes so far
-uint16_t error_count = 0; // total errors encountered so far
-
-char c_buf[64]; // for creating messages
-
-void setup()
-{
- // set pin modes
- pinMode(SLAVE_RESET_PIN,OUTPUT); // active low reset to slave device
- pinMode(OK_LED_PIN,OUTPUT); // indicates last transaction matched
- pinMode(ALL_OK_LED_PIN,OUTPUT); // indicates all transactions so far have matched
- pinMode(ERROR_LED_PIN,OUTPUT); // indicates last transaction mismatched
-
- // init the serial port
- Serial.begin(9600);
-
- // print some useful pinnout info for the Arduino
- //Serial.println(String("SCL:")+String(SCL)+String(", SDA:")+String(SDA));
- //Serial.println(String("MOSI:")+String(MOSI)+String(", SCK:")+String(SCK));
-
- // init the Wire object (for I2C)
- Wire.begin();
-
- // init the i2c clock
- // default is 100kHz if not changed
- // Wire.setClock(400000L); // 400kHz
-
- // reset the slave
- digitalWrite(SLAVE_RESET_PIN, LOW);
- delay(10);
- digitalWrite(SLAVE_RESET_PIN, HIGH);
-
- // set the all okay pin high
- digitalWrite(ALL_OK_LED_PIN, HIGH);
-
- // wait for slave to finish any init sequence
- delay(2000);
-}
-
-void loop()
-{
- uint8_t i;
- uint8_t req_rtn; // num bytes returned by requestFrom() call
- uint8_t rand_byte_count;
- uint8_t out_rand[16]; // data written from master
- uint8_t in_rand[16]; // data read back from slave
-
- bool mismatch;
-
- // count total number of request
- count++;
-
- // compute random number of bytes for this pass
- rand_byte_count = random(16) + 1;
-
- // force the first three requests to be small so that the tx buffer doesn't overflow
- // instantly and the user can see at least one successful transaction and some
- // mismtaches before the usiTwiSlave.c library hangs on the line "while ( !txCount );".
- if (count <= 3) rand_byte_count = 2;
-
- // generate, save, and send N random byte values
- Wire.beginTransmission(I2C_SLAVE_ADDR);
- for (i = 0; i < rand_byte_count; i++)
- Wire.write(out_rand[i] = random(256));
- Wire.endTransmission();
-
- // delay 20 milliseconds to accomodate slave onReceive() callback
- // function. The actual time that slave takes is application dependent, but
- // just storing the master's transmitted data does not take
- // anywhere near 20ms.
- delay(20);
-
- // read N bytes from slave
- req_rtn = Wire.requestFrom(I2C_SLAVE_ADDR, (int)rand_byte_count); // Request N bytes from slave
- for (i = 0; i < req_rtn; i++)
- in_rand[i] = Wire.read();
-
- // compare in/out data values
- mismatch = false;
- for (i = 0; i < rand_byte_count; i++)
- mismatch = mismatch || (out_rand[i] != in_rand[i]);
-
- // increment the error counter if the number of byte variables don't match or
- // if the data itself doesn't match
- if (mismatch || (rand_byte_count != req_rtn))
- {
- error_count++;
- digitalWrite(ERROR_LED_PIN, HIGH);
- digitalWrite(OK_LED_PIN, LOW);
- // If there's ever an error, reset the ALL_OK_LED
- // and it is not set again until the master resets.
- digitalWrite(ALL_OK_LED_PIN, LOW);
- }
- else
- {
- digitalWrite(ERROR_LED_PIN, LOW);
- digitalWrite(OK_LED_PIN, HIGH);
- }
-
- // The rest of the program just displays the results to the serial port
-
- // display total requests so far and error count so far
- snprintf(c_buf, sizeof(c_buf), "req: %3d,err: %3d", count, error_count);
- Serial.println(c_buf);
-
- // display the random byte count, the number of bytes read back, and "MATCH"/"MISMATCH"
- snprintf(c_buf, sizeof(c_buf), "size: %2d/%2d,%s", rand_byte_count, req_rtn, rand_byte_count != req_rtn?"MISMATCH <<--- !!!":"MATCH");
- Serial.println(c_buf);
-
- // display whether the data compare matched or mismatched
- snprintf(c_buf, sizeof(c_buf), "data: %s", mismatch?"MISMATCH <<--- !!!":"MATCH");
- Serial.println(c_buf);
-
- // send up to three tx/rx bytes so that random data can be
- // visually verified
- if (rand_byte_count >= 1)
- {
- snprintf(c_buf, sizeof(c_buf), "rand[0]: %02x/%02x", out_rand[0], in_rand[0]);
- Serial.println(c_buf);
- }
-
- if (rand_byte_count >= 2)
- {
- snprintf(c_buf, sizeof(c_buf), "rand[1]: %02x/%02x", out_rand[1], in_rand[1]);
- Serial.println(c_buf);
- }
-
- if (rand_byte_count >= 3)
- {
- snprintf(c_buf, sizeof(c_buf), "rand[2]: %02x/%02x", out_rand[2], in_rand[2]);
- Serial.println(c_buf);
- }
-
- // delay 1 second so user can watch results
- delay(1000);
-}
diff --git a/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Slave/TinyWireS_Stress_Slave.ino b/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Slave/TinyWireS_Stress_Slave.ino
deleted file mode 100644
index c7fbe41..0000000
--- a/digital-driver/firmware/TinyWireS/examples/TinyWireS_Stress_Slave/TinyWireS_Stress_Slave.ino
+++ /dev/null
@@ -1,143 +0,0 @@
-// ---------------------------------
-// Stress test program/example for TinyWireS I2C library.
-// Run this slave program on the Attiny.
-// Run the other master program on the Arduino Uno R3.
-// ---------------------------------
-// // Written by Scott Hartog, 2/6/2016, to stress test the TinyWireS library.
-// https://github.com/rambo/TinyWire
-//
-// This project uses the Tiny85 as an I2C slave.
-//
-// The slave program using TinyWireS, running on a Attiny85, receives
-// N bytes of random data in a single receiveEvent() callback and
-// stores that data in a global buffer. It then responds the first requestEvent()
-// callback with that same data. The requestEvent() callback overwrites the data
-// buffer with zeros after responding so it will only respond correctly to the
-// first requestEvent() callback after each receiveEvent() callback. Subsequent
-// requestEvent() will respond with 0xff for all data bytes.
-//
-//
-// SETUP:
-// AtTiny Pin 5 (PB0/SDA) = I2C SDA
-// connect to SDA on master with external pull-up (~4.7K)
-// AtTiny Pin 7 (PB0/SCL) = I2C SCL
-// connect to SCL on master with external pull-up (~4.7K)
-// AtTiny Pin 1 (PB5/!RST)
-// connect to reset on master (or just pull-up)
-//
-// Please see credits and usage for usiTwiSlave and TinyWireS in the .h files of
-// those libraries.
-
-#include <avr/sleep.h>
-#include <avr/wdt.h>
-#include "TinyWireS.h" // wrapper class for I2C slave routines
-
-#define I2C_SLAVE_ADDR 0x26 // i2c slave address (38, 0x26)
-
-// turns on code that makes the Tiny85 sleep between transactions
-// This is optional. The Tiny85 current drops from
-// about 2mA to about 20uA when the CPU is put into
-// PowerDown sleep mode.
-#define USE_CPU_SLEEP
-
-// global buffer to store data sent from the master.
-uint8_t master_data[16];
-// global variable to number of bytes sent from the master.
-uint8_t master_bytes;
-
-// Gets called when the ATtiny receives an i2c write slave request
-// This routine runs from the usiTwiSlave interrupt service routine (ISR)
-// so interrupts are disabled while it runs.
-void receiveEvent(uint8_t num_bytes)
-{
- uint8_t i;
-
- // save the number of bytes sent from the master
- master_bytes = num_bytes;
-
- // store the data from the master into the data buffer
- for (i = 0; i < master_bytes; i++)
- master_data[i] = TinyWireS.receive();
-
-}
-
-// Gets called when the ATtiny receives an i2c read slave request
-// This routine runs from the usiTwiSlave interrupt service routine (ISR)
-// so interrupts are disabled while it runs.
-void requestEvent()
-{
- uint8_t i;
-
- // send the data buffer back to the master
- for (i = 0; i < master_bytes; i++)
- TinyWireS.send(master_data[i]);
-
- // corrupt the byte values in the data buffer
- // so that any subsequent call won't match
- for (i = 0; i < master_bytes; i++)
- master_data[i] += 0x5a;
-
- // corrupt length of the request, but don't make it zero
-
- // if the usiTwiSlave.c is working fine, then this number is completely irrelevant
- // because the requestEvent() callback will not be called again until
- // after the next receiveEvent() callback, so the master_data and
- // master_bytes variables will be overwritten by that call.
-
- // If the usiTwiSlave.c has the issue of calling the requestFrom() callback
- // for each byte sent, the buffer will accumulate by this amount *for each byte
- // in the original request*. (This problem is fixed in the recent version.)
- //
- // Making it zero will obscure the 1-byte send issue in the usiTwiSlave.c
- // that is being tested.
- // Making it small will allow a few requests to succeed before the tx buffer
- // overflows and the usiTwiSlave.c hangs on the "while ( tmphead == txTail );"
- // line
- master_bytes = 2;
-}
-
-void setup()
-{
- //pinMode(1,OUTPUT); // This pin can be used for rudimentary debug
-
- // initialize the TinyWireS and usiTwiSlave libraries
- TinyWireS.begin(I2C_SLAVE_ADDR); // init I2C Slave mode
-
- // register the onReceive() callback function
- TinyWireS.onReceive(receiveEvent);
-
- // register the onRequest() callback function
- TinyWireS.onRequest(requestEvent);
-
- // disable the watchdog timer so that it doesn't
- // cause power-up, code is from datasheet
- // Clear WDRF in MCUSR – MCU Status Register
- // MCUSR provides information on which reset source caused an MCU Reset.
- MCUSR = 0x00;
- // WDTCR - Watchdog Timer Control Register
- // Write logical one to WDCE and WDE (must be done before disabling)
- WDTCR |= ( _BV(WDCE) | _BV(WDE) );
- // Turn off WDT
- WDTCR = 0x00;
-
-#ifdef USE_CPU_SLEEP
- // enable power down sleep mode
- set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode
- sleep_enable();
-#endif
-
- sei(); // enable interrupts
-
-}
-
-void loop()
-{
-
-#ifdef USE_CPU_SLEEP
- // optionally put the CPU to sleep. It will be woken by a USI interrupt
- // when it sees a "start condition" on the I2C bus. Everything interesting
- // happens in the usiTwiSlave ISR.
- sleep_cpu();
-#endif
-
-}
diff --git a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_analog/attiny85_i2c_analog.ino b/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_analog/attiny85_i2c_analog.ino
deleted file mode 100644
index 7190c93..0000000
--- a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_analog/attiny85_i2c_analog.ino
+++ /dev/null
@@ -1,210 +0,0 @@
-/**
- * Example sketch for writing to and reading from a slave in transactional manner
- *
- * NOTE: You must not use delay() or I2C communications will fail, use tws_delay() instead (or preferably some smarter timing system)
- *
- * On write the first byte received is considered the register addres to modify/read
- * On each byte sent or read the register address is incremented (and it will loop back to 0)
- *
- * You can try this with the Arduino I2C REPL sketch at https://github.com/rambo/I2C/blob/master/examples/i2crepl/i2crepl.ino
- * If you have bus-pirate remember that the older revisions do not like the slave streching the clock, this leads to all sorts of weird behaviour
- * Examples use bus-pirate semantics (like the REPL)
- *
- * The basic idea is:
- * 1. Choose your ADC channel (0-X), use "byte ch = 1;" for example.
- * 2. Combine the channel and conversion start flag to single calue: byte start_on_ch = (ch | _BV(7)); // This is 0x81
- * 3. Write start_on_ch to the first register on the attiny [ 8 0 81 ]
- * 4. Come back later and check the first register [ 8 0 [ r ], if the value is same as ch then the conversion is complete, you can now read the value
- * 5. read the value [ 8 2 [ r r ] (first one is low, second high byte)
- *
- * You need to have at least 8MHz clock on the ATTiny for this to work (and in fact I have so far tested it only on ATTiny85 @8MHz using internal oscillator)
- * Remember to "Burn bootloader" to make sure your chip is in correct mode
- */
-
-
-/**
- * Pin notes by Suovula, see also http://hlt.media.mit.edu/?p=1229
- *
- * DIP and SOIC have same pinout, however the SOIC chips are much cheaper, especially if you buy more than 5 at a time
- * For nice breakout boards see https://github.com/rambo/attiny_boards
- *
- * Basically the arduino pin numbers map directly to the PORTB bit numbers.
- *
-// I2C
-arduino pin 0 = not(OC1A) = PORTB <- _BV(0) = SOIC pin 5 (I2C SDA, PWM)
-arduino pin 2 = = PORTB <- _BV(2) = SOIC pin 7 (I2C SCL, Analog 1)
-// Timer1 -> PWM
-arduino pin 1 = OC1A = PORTB <- _BV(1) = SOIC pin 6 (PWM)
-arduino pin 3 = not(OC1B) = PORTB <- _BV(3) = SOIC pin 2 (Analog 3)
-arduino pin 4 = OC1B = PORTB <- _BV(4) = SOIC pin 3 (Analog 2)
- */
-#define I2C_SLAVE_ADDRESS 0x4 // the 7-bit address (remember to change this when adapting this example)
-// Get this from https://github.com/rambo/TinyWire
-#include <TinyWireS.h>
-// The default buffer size, though we cannot actually affect it by defining it in the sketch
-#ifndef TWI_RX_BUFFER_SIZE
-#define TWI_RX_BUFFER_SIZE ( 16 )
-#endif
-// For the ADC_xxx helpers
-#include <core_adc.h>
-
-// The "registers" we expose to I2C
-volatile uint8_t i2c_regs[] =
-{
- 0x0, // Status register, writing (1<<7 & channel) will start a conversion on that channel, the flag will be set low when conversion is done.
- 0x1, // Averaging count, make this many conversions in row and average the result (well, actually it's a rolling average since we do not want to have the possibility of integer overflows)
- 0x0, // low byte
- 0x0, // high byte
-};
-const byte reg_size = sizeof(i2c_regs);
-// Tracks the current register pointer position
-volatile byte reg_position;
-// Tracks wheter to start a conversion cycle
-volatile boolean start_conversion;
-// Counter to track where we are averaging
-byte avg_count;
-// Some temp value holders
-int avg_temp1;
-int avg_temp2;
-
-/**
- * This is called for each read request we receive, never put more than one byte of data (with TinyWireS.send) to the
- * send-buffer when using this callback
- */
-void requestEvent()
-{
- TinyWireS.send(i2c_regs[reg_position]);
- // Increment the reg position on each read, and loop back to zero
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
-}
-
-/**
- * The I2C data received -handler
- *
- * This needs to complete before the next incoming transaction (start, data, restart/stop) on the bus does
- * so be quick, set flags for long running tasks to be called from the mainloop instead of running them directly,
- */
-void receiveEvent(uint8_t howMany)
-{
- if (howMany < 1)
- {
- // Sanity-check
- return;
- }
- if (howMany > TWI_RX_BUFFER_SIZE)
- {
- // Also insane number
- return;
- }
-
- reg_position = TinyWireS.receive();
- howMany--;
- if (!howMany)
- {
- // This write was only to set the buffer for next read
- return;
- }
- while(howMany--)
- {
- i2c_regs[reg_position] = TinyWireS.receive();
- if ( reg_position == 0 // If it was the first register
- && bitRead(i2c_regs[0], 7) // And the highest bit is set
- && !ADC_ConversionInProgress() // and we do not actually have a conversion running already
- )
- {
- start_conversion = true;
- }
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
- }
-}
-
-
-void setup()
-{
- // TODO: Tri-state this and wait for input voltage to stabilize
- pinMode(3, OUTPUT); // OC1B-, Arduino pin 3, ADC
- digitalWrite(3, LOW); // Note that this makes the led turn on, it's wire this way to allow for the voltage sensing above.
-
- pinMode(1, OUTPUT); // OC1A, also The only HW-PWM -pin supported by the tiny core analogWrite
-
- /**
- * Reminder: taking care of pull-ups is the masters job
- */
-
- TinyWireS.begin(I2C_SLAVE_ADDRESS);
- TinyWireS.onReceive(receiveEvent);
- TinyWireS.onRequest(requestEvent);
-
-
- // Whatever other setup routines ?
-
- digitalWrite(3, HIGH);
-}
-
-void loop()
-{
- /**
- * This is the only way we can detect stop condition (http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=984716&sid=82e9dc7299a8243b86cf7969dd41b5b5#984716)
- * it needs to be called in a very tight loop in order not to miss any (REMINDER: Do *not* use delay() anywhere, use tws_delay() instead).
- * It will call the function registered via TinyWireS.onReceive(); if there is data in the buffer on stop.
- */
- TinyWireS_stop_check();
-
- // Thus stuff is basically copied from wiring_analog.c
- if (start_conversion)
- {
- //Avoid doubled starts
- start_conversion = false;
- byte adcpin = (i2c_regs[0] & 0x7f); // Set the channel from the control reg, dropping the highest bit.
-#if defined( CORE_ANALOG_FIRST )
- if ( adcpin >= CORE_ANALOG_FIRST ) adcpin -= CORE_ANALOG_FIRST; // allow for channel or pin numbers
-#endif
- // NOTE: These handy helpers (ADC_xxx) are only present in the tiny-core, for other cores you need to check their wiring_analog.c source.
- ADC_SetInputChannel( (adc_ic_t)adcpin ); // we need to typecast
- ADC_StartConversion();
- // Reset these variables
- avg_count = 0;
- avg_temp2 = 0;
- }
-
- if ( bitRead(i2c_regs[0], 7) // We have conversion flag up
- && !ADC_ConversionInProgress()) // But the conversion is complete
- {
- // So handle it
- avg_temp1 = ADC_GetDataRegister();
- // Rolling average
- if (avg_count)
- {
- avg_temp2 = (avg_temp2+avg_temp1)/2;
- }
- else
- {
- avg_temp2 = avg_temp1;
- }
- avg_count++;
- if (avg_count >= i2c_regs[1])
- {
- // All done, set the bytes to registers
- cli();
- i2c_regs[2] = lowByte(avg_temp2);
- i2c_regs[3] = highByte(avg_temp2);
- sei();
- // And clear the conversion flag so the master knows we're ready
- bitClear(i2c_regs[0], 7);
- }
- else
- {
- // Re-trigger conversion
- ADC_StartConversion();
- }
- }
-
-}
diff --git a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave/attiny85_i2c_slave.ino b/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave/attiny85_i2c_slave.ino
deleted file mode 100644
index df2532f..0000000
--- a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave/attiny85_i2c_slave.ino
+++ /dev/null
@@ -1,152 +0,0 @@
-/**
- * Example sketch for writing to and reading from a slave in transactional manner
- *
- * NOTE: You must not use delay() or I2C communications will fail, use tws_delay() instead (or preferably some smarter timing system)
- *
- * On write the first byte received is considered the register addres to modify/read
- * On each byte sent or read the register address is incremented (and it will loop back to 0)
- *
- * You can try this with the Arduino I2C REPL sketch at https://github.com/rambo/I2C/blob/master/examples/i2crepl/i2crepl.ino
- * If you have bus-pirate remember that the older revisions do not like the slave streching the clock, this leads to all sorts of weird behaviour
- *
- * To read third value (register number 2 since counting starts at 0) send "[ 8 2 [ 9 r ]", value read should be 0xBE
- * If you then send "[ 9 r r r ]" you should get 0xEF 0xDE 0xAD as response (demonstrating the register counter looping back to zero)
- *
- * You need to have at least 8MHz clock on the ATTiny for this to work (and in fact I have so far tested it only on ATTiny85 @8MHz using internal oscillator)
- * Remember to "Burn bootloader" to make sure your chip is in correct mode
- */
-
-
-/**
- * Pin notes by Suovula, see also http://hlt.media.mit.edu/?p=1229
- *
- * DIP and SOIC have same pinout, however the SOIC chips are much cheaper, especially if you buy more than 5 at a time
- * For nice breakout boards see https://github.com/rambo/attiny_boards
- *
- * Basically the arduino pin numbers map directly to the PORTB bit numbers.
- *
-// I2C
-arduino pin 0 = not(OC1A) = PORTB <- _BV(0) = SOIC pin 5 (I2C SDA, PWM)
-arduino pin 2 = = PORTB <- _BV(2) = SOIC pin 7 (I2C SCL, Analog 1)
-// Timer1 -> PWM
-arduino pin 1 = OC1A = PORTB <- _BV(1) = SOIC pin 6 (PWM)
-arduino pin 3 = not(OC1B) = PORTB <- _BV(3) = SOIC pin 2 (Analog 3)
-arduino pin 4 = OC1B = PORTB <- _BV(4) = SOIC pin 3 (Analog 2)
- */
-#define I2C_SLAVE_ADDRESS 0x4 // the 7-bit address (remember to change this when adapting this example)
-// Get this from https://github.com/rambo/TinyWire
-#include <TinyWireS.h>
-// The default buffer size, Can't recall the scope of defines right now
-#ifndef TWI_RX_BUFFER_SIZE
-#define TWI_RX_BUFFER_SIZE ( 16 )
-#endif
-
-
-volatile uint8_t i2c_regs[] =
-{
- 0xDE,
- 0xAD,
- 0xBE,
- 0xEF,
-};
-// Tracks the current register pointer position
-volatile byte reg_position;
-const byte reg_size = sizeof(i2c_regs);
-
-/**
- * This is called for each read request we receive, never put more than one byte of data (with TinyWireS.send) to the
- * send-buffer when using this callback
- */
-void requestEvent()
-{
- TinyWireS.send(i2c_regs[reg_position]);
- // Increment the reg position on each read, and loop back to zero
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
-}
-
-// TODO: Either update this to use something smarter for timing or remove it alltogether
-void blinkn(uint8_t blinks)
-{
- digitalWrite(3, HIGH);
- while(blinks--)
- {
- digitalWrite(3, LOW);
- tws_delay(50);
- digitalWrite(3, HIGH);
- tws_delay(100);
- }
-}
-
-/**
- * The I2C data received -handler
- *
- * This needs to complete before the next incoming transaction (start, data, restart/stop) on the bus does
- * so be quick, set flags for long running tasks to be called from the mainloop instead of running them directly,
- */
-void receiveEvent(uint8_t howMany)
-{
- if (howMany < 1)
- {
- // Sanity-check
- return;
- }
- if (howMany > TWI_RX_BUFFER_SIZE)
- {
- // Also insane number
- return;
- }
-
- reg_position = TinyWireS.receive();
- howMany--;
- if (!howMany)
- {
- // This write was only to set the buffer for next read
- return;
- }
- while(howMany--)
- {
- i2c_regs[reg_position] = TinyWireS.receive();
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
- }
-}
-
-
-void setup()
-{
- // TODO: Tri-state this and wait for input voltage to stabilize
- pinMode(3, OUTPUT); // OC1B-, Arduino pin 3, ADC
- digitalWrite(3, LOW); // Note that this makes the led turn on, it's wire this way to allow for the voltage sensing above.
-
- pinMode(1, OUTPUT); // OC1A, also The only HW-PWM -pin supported by the tiny core analogWrite
-
- /**
- * Reminder: taking care of pull-ups is the masters job
- */
-
- TinyWireS.begin(I2C_SLAVE_ADDRESS);
- TinyWireS.onReceive(receiveEvent);
- TinyWireS.onRequest(requestEvent);
-
-
- // Whatever other setup routines ?
-
- digitalWrite(3, HIGH);
-}
-
-void loop()
-{
- /**
- * This is the only way we can detect stop condition (http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=984716&sid=82e9dc7299a8243b86cf7969dd41b5b5#984716)
- * it needs to be called in a very tight loop in order not to miss any (REMINDER: Do *not* use delay() anywhere, use tws_delay() instead).
- * It will call the function registered via TinyWireS.onReceive(); if there is data in the buffer on stop.
- */
- TinyWireS_stop_check();
-}
diff --git a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave_task/attiny85_i2c_slave_task.ino b/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave_task/attiny85_i2c_slave_task.ino
deleted file mode 100644
index 4b3f269..0000000
--- a/digital-driver/firmware/TinyWireS/examples/attiny85_i2c_slave_task/attiny85_i2c_slave_task.ino
+++ /dev/null
@@ -1,246 +0,0 @@
-/**
- * Example sketch for writing to and reading from a slave in transactional manner, it will also blink a led attached to pin 3 (which is the SOIC pin 2)
- * (provided you're using one of my ATTiny85 boards from https://github.com/rambo/attiny_boards with the led soldered)
- *
- * NOTE: You must not use delay() or I2C communications will fail, use tws_delay() instead (or preferably some smarter timing system, like the Task library used in this example)
- *
- * On write the first byte received is considered the register addres to modify/read
- * On each byte sent or read the register address is incremented (and it will loop back to 0)
- *
- * You can try this with the Arduino I2C REPL sketch at https://github.com/rambo/I2C/blob/master/examples/i2crepl/i2crepl.ino
- * If you have bus-pirate remember that the older revisions do not like the slave streching the clock, this leads to all sorts of weird behaviour
- *
- * By default this blinks the SOS morse pattern and then has long on/off time to indicate end of pattern, send [ 8 0 32 ] (using the REPL/bus-pirate
- * semantics) to make the delay per bit smaller (and thus blinking faster). The pattern lenght is calculated from the register size, it would be fairly
- * trivial to make it yet another variable changeable via I2C.
- *
- * You need to have at least 8MHz clock on the ATTiny for this to work (and in fact I have so far tested it only on ATTiny85 @8MHz using internal oscillator)
- * Remember to "Burn bootloader" to make sure your chip is in correct mode
- */
-
-
-/**
- * Pin notes by Suovula, see also http://hlt.media.mit.edu/?p=1229
- *
- * DIP and SOIC have same pinout, however the SOIC chips are much cheaper, especially if you buy more than 5 at a time
- * For nice breakout boards see https://github.com/rambo/attiny_boards
- *
- * Basically the arduino pin numbers map directly to the PORTB bit numbers.
- *
-// I2C
-arduino pin 0 = not(OC1A) = PORTB <- _BV(0) = SOIC pin 5 (I2C SDA, PWM)
-arduino pin 2 = = PORTB <- _BV(2) = SOIC pin 7 (I2C SCL, Analog 1)
-// Timer1 -> PWM
-arduino pin 1 = OC1A = PORTB <- _BV(1) = SOIC pin 6 (PWM)
-arduino pin 3 = not(OC1B) = PORTB <- _BV(3) = SOIC pin 2 (Analog 3)
-arduino pin 4 = OC1B = PORTB <- _BV(4) = SOIC pin 3 (Analog 2)
- */
-#define I2C_SLAVE_ADDRESS 0x4 // the 7-bit address (remember to change this when adapting this example)
-// Get this from https://github.com/rambo/TinyWire
-#include <TinyWireS.h>
-// The default buffer size, Can't recall the scope of defines right now
-#ifndef TWI_RX_BUFFER_SIZE
-#define TWI_RX_BUFFER_SIZE ( 16 )
-#endif
-// Get this library from http://bleaklow.com/files/2010/Task.tar.gz
-// and read http://bleaklow.com/2010/07/20/a_very_simple_arduino_task_manager.html for background and instructions
-#include <Task.h>
-#include <TaskScheduler.h>
-
-// The led is connected so that the tiny sinks current
-#define LED_ON LOW
-#define LED_OFF HIGH
-
-// The I2C registers
-volatile uint8_t i2c_regs[] =
-{
- 150, // Delay between each position (ms, remeber that this isa byte so 255 is max)
- B10101000, // SOS pattern
- B01110111,
- B01110001,
- B01010000,
- B00000000,
- B11111111, // Long on and off to mark end of pattern
- B00000000,
-};
-// Tracks the current register pointer position
-volatile byte reg_position;
-const byte reg_size = sizeof(i2c_regs);
-
-
-/**
- * BEGIN: PatternBlinker task based on the Task library Blinker example
- */
-// Timed task to blink a LED.
-const byte pattern_lenght = (sizeof(i2c_regs)-1) * 8; // bits (first is the speed, rest is the pattern)
-class PatternBlinker : public TimedTask
-{
-public:
- // Create a new blinker for the specified pin and rate.
- PatternBlinker(uint8_t _pin);
- virtual void run(uint32_t now);
-private:
- uint8_t pin; // LED pin.
- uint8_t pattern_position; // Used to calcuate the register and bit offset
-};
-
-PatternBlinker::PatternBlinker(uint8_t _pin)
-: TimedTask(millis()),
- pin(_pin)
-{
- pinMode(pin, OUTPUT); // Set pin for output.
-}
-
-void PatternBlinker::run(uint32_t now)
-{
- // Start by setting the next runtime
- incRunTime(i2c_regs[0]);
-
- // Written out for clear code, the complier might optimize it to something more efficient even without it being unrolled into one line
- byte reg = i2c_regs[1+(pattern_position/8)]; // Get the register where the bit pattern position is stored
- byte shift_amount = 7 - (pattern_position % 7); // To have "natural" left-to-right pattern flow.
- bool state = (reg >> shift_amount) & 0x1;
- if (state) {
- digitalWrite(pin, LED_ON);
- } else {
- digitalWrite(pin, LED_OFF);
- }
- // Calculate the next pattern position
- pattern_position = (pattern_position+1) % pattern_lenght;
-}
-/**
- * END: PatternBlinker task copied from the Task library example
- */
-/**
- * BEGIN: I2C Stop flag checker
- *
- * This task needs to run almost all the time due to the USI I2C implementation limitations
- *
- * So I2CStopCheck_YIELD_TICKS below is used to specify how often the task is run, not it's every 4 ticks
- */
-#define I2CStopCheck_YIELD_TICKS 4
-class I2CStopCheck : public Task
-{
-public:
- I2CStopCheck();
- virtual void run(uint32_t now);
- virtual bool canRun(uint32_t now);
-private:
- uint8_t yield_counter; // Incremented on each canRun call, used to yield to other tasks.
-};
-
-I2CStopCheck::I2CStopCheck()
-: Task()
-{
-}
-
-// We can't just return true since then no other task could ever run (since we have the priority)
-bool I2CStopCheck::canRun(uint32_t now)
-{
- yield_counter++;
- bool ret = false;
- if (yield_counter == I2CStopCheck_YIELD_TICKS)
- {
- ret = true;
- yield_counter = 0;
- }
- return ret;
-}
-
-void I2CStopCheck::run(uint32_t now)
-{
- TinyWireS_stop_check();
-}
-/**
- * END: I2C Stop flag checker
- */
-
-// Create the tasks.
-PatternBlinker blinker(3);
-I2CStopCheck checker;
-
-// Tasks are in priority order, only one task is run per tick
-Task *tasks[] = { &checker, &blinker, };
-TaskScheduler sched(tasks, NUM_TASKS(tasks));
-
-
-/**
- * This is called for each read request we receive, never put more than one byte of data (with TinyWireS.send) to the
- * send-buffer when using this callback
- */
-void requestEvent()
-{
- TinyWireS.send(i2c_regs[reg_position]);
- // Increment the reg position on each read, and loop back to zero
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
-}
-
-/**
- * The I2C data received -handler
- *
- * This needs to complete before the next incoming transaction (start, data, restart/stop) on the bus does
- * so be quick, set flags for long running tasks to be called from the mainloop instead of running them directly,
- */
-void receiveEvent(uint8_t howMany)
-{
- if (howMany < 1)
- {
- // Sanity-check
- return;
- }
- if (howMany > TWI_RX_BUFFER_SIZE)
- {
- // Also insane number
- return;
- }
-
- reg_position = TinyWireS.receive();
- howMany--;
- if (!howMany)
- {
- // This write was only to set the buffer for next read
- return;
- }
- while(howMany--)
- {
- i2c_regs[reg_position] = TinyWireS.receive();
- reg_position++;
- if (reg_position >= reg_size)
- {
- reg_position = 0;
- }
- }
-}
-
-
-void setup()
-{
- // TODO: Tri-state this and wait for input voltage to stabilize
- pinMode(3, OUTPUT); // OC1B-, Arduino pin 3, ADC
- digitalWrite(3, LED_ON); // Note that this makes the led turn on, it's wire this way to allow for the voltage sensing above.
-
- pinMode(1, OUTPUT); // OC1A, also The only HW-PWM -pin supported by the tiny core analogWrite
-
- /**
- * Reminder: taking care of pull-ups is the masters job
- */
-
- TinyWireS.begin(I2C_SLAVE_ADDRESS);
- TinyWireS.onReceive(receiveEvent);
- TinyWireS.onRequest(requestEvent);
-
-
- // Whatever other setup routines ?
-
- digitalWrite(3, LED_OFF);
-}
-
-void loop()
-{
- // Run the scheduler - never returns.
- sched.run();
-}