diff options
Diffstat (limited to 'spectroscopy')
| -rw-r--r-- | spectroscopy/chapter.tex | 3 | 
1 files changed, 2 insertions, 1 deletions
| diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex index 3bde7b4..030edd5 100644 --- a/spectroscopy/chapter.tex +++ b/spectroscopy/chapter.tex @@ -67,6 +67,7 @@ For simplicity, we consider a single transition dipole, $\mu$.  %  The Hamiltonian which controls the coupling of or simple system to the electric field described in
  ...:
 +% jcw- ISN'T IT JUST MU DOT E WHERE E IS A VECTOR THAT IS TIME DEPENDENT, NOT A TIME DERIVATIVE 
  \begin{equation}
    H = H_{\circ} - \mu \dot E
  \end{equation}
 @@ -90,7 +91,7 @@ In Dirac notation \cite{DiracPaulAdrienMaurice1939a}., an observable (such as $\  \end{equation}
  The complex wavefunction is called a \emph{ket}, represented $|b>$.  %
  The complex conjugate is called a \emph{bra}, represented $<a|$.  %
 -When expanded,
 +When expanded,  % JCW- MU IS NOT THE OPERATOR. THE OPERATOR IS THE TIME DEPENDENT HAMILTONIAN. MU MULIPLIES ca and cb
  \begin{equation}
    \mu(t) = c_a^2\mu_a + c_b^2\mu_b + \left< c_aa \left| \hat{mu} \right| c_bb \right> +
    \left<c_bb \left| \hat{mu} \right| c_aa \right>
 | 
