diff options
Diffstat (limited to 'instrument/scatter/2016.05.02 16-33-15 current delay space/src')
3 files changed, 0 insertions, 273 deletions
| diff --git a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py b/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py deleted file mode 100644 index e040203..0000000 --- a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py +++ /dev/null @@ -1,171 +0,0 @@ -"""
 -@author: Dan
 -
 -each instance of running this depends on a few initial conditions that have to 
 -be specified:
 -    out_group
 -    rho_0
 -    wa_central
 -    a_coupling
 -    gamma
 -    dipoles
 -
 -so create a class where all these can describe the specific instance
 -"""
 -
 -from NISE.lib.misc import *
 -
 -def gen_w_0(wa_central, a_coupling):
 -    # convert nice system parameters into system vector indeces
 -    w_ag = wa_central
 -    w_2aa = w_ag - a_coupling
 -    w_2ag = 2*w_ag - a_coupling
 -    w_gg = 0.
 -    w_aa = w_gg
 -    return np.array( [w_gg, w_ag, -w_ag, w_aa, w_2ag, w_ag, w_2aa] )
 -
 -def gen_Gamma_0(tau_ag, tau_aa, tau_2ag, tau_2aa):
 -    # same as gen_w_0, but for dephasing/relaxation times
 -    tau = np.array( [np.inf, tau_ag, tau_ag, 
 -                       tau_aa, tau_2ag, 
 -                       tau_ag, tau_2aa ] )
 -    Gamma = 1/tau
 -    return Gamma
 -
 -class Omega:
 -    # record the propagator module used to evolve this hamiltonian
 -    propagator = 'rk'
 -    # phase cycling is not valuable in this hamiltonian
 -    pc = False
 -    # all attributes should have good initial guesses for parameters
 -    dm_vector = ['gg1','ag','ga','aa','2ag','ag2','2aa']
 -    #out_group = [[6,7]]#,[7]]
 -    out_group = [[5],[6]] # use this to separate alpha/gamma from beta for now
 -    #--------------------------Oscillator Properties--------------------------
 -    rho_0 = np.zeros((len(dm_vector)), dtype=np.complex64)
 -    rho_0[0] = 1.
 -    # 1S exciton central position
 -    wa_central = 7000.
 -    # exciton-exciton coupling
 -    a_coupling = 0. # cm-1
 -    # dephasing times, fs
 -    tau_ag  = 50.
 -    tau_aa  = np.inf #1./2000.
 -    tau_2aa = tau_ag
 -    tau_2ag = tau_ag
 -    # transition dipoles (a.u.)
 -    mu_ag =  1.0
 -    mu_2aa = 1.0 * mu_ag # HO approx (1.414) vs. uncorr. electron approx. (1.)
 -    # TOs sets which time-ordered pathways to include (1-6 for TrEE)
 -    # defaults to include all time-orderings included
 -    TOs = range(7)[1:] 
 -    #--------------------------Recorded attributes--------------------------
 -    out_vars = ['dm_vector', 'out_group', 'rho_0', 'mu_ag', 'mu_2aa', 
 -                'tau_ag', 'tau_aa', 'tau_2aa', 'tau_2ag',
 -                'wa_central', 'a_coupling', 'pc', 'propagator', 
 -                'TOs']
 -    #--------------------------Methods--------------------------
 -    def __init__(self, **kwargs):
 -        # inherit all class attributes unless kwargs has them; then use those 
 -        # values.  if kwargs is not an Omega attribute, it gets ignored
 -        # careful: don't redefine instance methods as class methods!
 -        for key, value in kwargs.items():
 -            if key in Omega.__dict__.keys(): 
 -                setattr(self, key, value)
 -            else:
 -                print 'did not recognize attribute {0}.  No assignment made'.format(key)
 -        # with this set, initialize parameter vectors
 -        self.w_0 = gen_w_0(self.wa_central, self.a_coupling)
 -        self.Gamma = gen_Gamma_0(self.tau_ag, self.tau_aa, self.tau_2ag, 
 -                                 self.tau_2aa)
 -
 -    def o(self, efields, t, wl):
 -        # combine the two pulse permutations to produce one output array
 -        E1, E2, E3 = efields[0:3]
 -    
 -        out1 = self._gen_matrix(E1, E2, E3, t, wl, w1first = True)
 -        out2 = self._gen_matrix(E1, E2, E3, t, wl, w1first = False)
 -
 -        return np.array([out1, out2], dtype=np.complex64)
 -    
 -    def _gen_matrix(self, E1, E2, E3, t, wl, w1first = True):
 -        """
 -        creates the coupling array given the input e-fields values for a specific time, t
 -        w1first selects whether w1 or w2p is the first interacting positive field
 -        
 -        Currently neglecting pathways where w2 and w3 require different frequencies
 -        (all TRIVE space, or DOVE on diagonal)
 -        
 -        Matrix formulated such that dephasing/relaxation is accounted for 
 -        outside of the matrix
 -        """
 -        wag  = wl[1]
 -        w2aa = wl[6]
 -        
 -        mu_ag = self.mu_ag
 -        mu_2aa = self.mu_2aa
 -    
 -        if w1first==True:
 -            first  = E1
 -            second = E3
 -        else:
 -            first  = E3
 -            second = E1
 -
 -        O = np.zeros((len(t), len(wl), len(wl)), dtype=np.complex64)
 -        # from gg1
 -        O[:,1,0] =  mu_ag  * first  * rotor(-wag*t)
 -        if w1first and 3 in self.TOs:
 -            O[:,2,0] = -mu_ag  * E2     * rotor(wag*t)
 -        if not w1first and 5 in self.TOs:
 -            O[:,2,0] = -mu_ag  * E2     * rotor(wag*t)
 -        # from ag1
 -        #   to DQC
 -        if w1first and 2 in self.TOs:
 -            O[:,4,1] =  mu_2aa * second * rotor(-w2aa*t)
 -        if not w1first and 4 in self.TOs:
 -            O[:,4,1] =  mu_2aa * second * rotor(-w2aa*t)
 -        #   to pop
 -        if w1first and 1 in self.TOs:
 -            O[:,3,1] =  -mu_ag  * E2     * rotor(wag*t)
 -        if not w1first and 6 in self.TOs:
 -            O[:,3,1] =  -mu_ag  * E2     * rotor(wag*t)
 -        # from ga
 -        O[:,3,2] =  mu_ag  * first  * rotor(-wag*t)
 -        # from gg-aa
 -        O[:,5,3]  = -mu_ag  * second * rotor(-wag*t)      * mu_ag
 -        #   because of alpha and gamma pathways, count twice
 -        O[:,5,3] -= mu_ag  * second * rotor(-wag*t)      * mu_ag
 -        O[:,6,3]  = mu_2aa * second * rotor(-w2aa*t)     * mu_2aa
 -        # from 2ag
 -        O[:,6,4] =  mu_ag  * E2     * rotor(wag*t)       * mu_2aa
 -        O[:,5,4] = -mu_2aa * E2     * rotor(w2aa*t)      * mu_ag
 -        
 -        # make complex according to Liouville Equation
 -        O *= complex(0,0.5)
 -        
 -        # include coherence decay rates:
 -        for i in range(O.shape[-1]):
 -            O[:,i,i] = -self.Gamma[i]
 -
 -        return O
 -    
 -    def ws(self, inhom_object):
 -        """
 -        creates the correspondence of oscillator energies to the state vector
 -        contains instructions for how energies change as subsets are changed
 -        """
 -        z = inhom_object.zeta
 -        
 -        wg = 0.0 + 0*z
 -        wa = z + self.wa_central
 -        w2a = 2*wa - self.a_coupling
 -    
 -        w_ag = wa - wg
 -        w_aa = wa - wa
 -        w_gg = wg - wg
 -        w_2ag = w2a - wg
 -        w_2aa = w2a - wa
 -        #array aggregates all frequencies to match state vectors
 -        w     = np.array( [w_gg, w_ag, -w_ag, w_aa, w_2ag, w_ag, w_2aa] )
 -        return w
 diff --git a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/class_maps.p b/instrument/scatter/2016.05.02 16-33-15 current delay space/src/class_maps.p deleted file mode 100644 index 44e2a40..0000000 --- a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/class_maps.p +++ /dev/null @@ -1,17 +0,0 @@ -(dp1 -S'H' -(lp2 -S'Omega' -p3 -aS'NISE.hamiltonians.H0' -p4 -aS'H0.py' -p5 -asS'Inhom' -p6 -(lp7 -g6 -ag6 -aS'inhom.py' -p8 -as.
\ No newline at end of file diff --git a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/inhom.py b/instrument/scatter/2016.05.02 16-33-15 current delay space/src/inhom.py deleted file mode 100644 index 1438846..0000000 --- a/instrument/scatter/2016.05.02 16-33-15 current delay space/src/inhom.py +++ /dev/null @@ -1,85 +0,0 @@ -# -*- coding: utf-8 -*-
 -"""
 -Created on Sat Jun 21 14:07:53 2014
 -
 -@author: Dan
 -"""
 -
 -from NISE.lib.misc import *
 -
 -class Inhom():
 -    # class contains the list of weights and sampling values to use
 -    #--------------------------Recorded attributes--------------------------
 -    out_vars = ['inhom_sampling', 'dist_params']
 -    #--------------------------Methods--------------------------
 -    def __init__(self, inhom_sampling=None, **dist_params):
 -        """
 -        generates the list of sampling points in the distribution and their weights
 -        inhom dists should be normalized (int(f, dzeta) = 1.)
 -        """
 -        # inherit all class attributes unless kwargs has them; then use those 
 -        # values.  if kwargs is not an Omega attribute, it gets ignored
 -        for key, value in dist_params.items():
 -            setattr(self, key, value)
 -        #print self.__dict__.items()
 -        # eliminating other quadrature methods; linear works best anyways
 -        if inhom_sampling == 'linear':
 -            # currently the only inhomogeneity parameter that can normalize well 
 -            # in relation to the case of no inhomogeneity
 -            if isinstance(dist_params.get('num'), int):
 -                num = dist_params.get('num')
 -            else:
 -                try:
 -                    num = int(num)
 -                except TypeError:
 -                    print 'no distribution sampling number specified; using 10 points as default'
 -                    num = 10
 -            if 'zeta_bound' in dist_params.keys():
 -                zeta_bound = dist_params.get('zeta_bound')
 -            else:
 -                zeta_bound = 3
 -            zeta = np.linspace(-zeta_bound, zeta_bound, num=num)
 -            # need parameter 'sigma'
 -            sigma = dist_params.get('sigma')
 -            # scale our sampling intervals according to sigma
 -            zeta = zeta * sigma
 -            self.zweight = 1 / (np.sqrt(2*np.pi)*sigma) * np.exp(- 0.5 * ((zeta / sigma)**2))
 -            self.dzeta = np.abs(zeta[1] - zeta[0])
 -            self.zeta = zeta
 -        elif inhom_sampling == 'rect':
 -            w = dist_params.get('w')
 -            if isinstance(dist_params.get('num'), int):
 -                num = dist_params['num']
 -            else:
 -                try:
 -                    num = int(num)
 -                except TypeError:
 -                    print 'no distribution sampling number specified; using 10 points as default'
 -                    num = 10
 -            self.zeta = np.linspace(-w,w,num=num)
 -            self.dzeta = np.abs(self.zeta[1] - self.zeta[0])
 -            self.zweight = np.ones(self.zeta.shape)
 -        elif inhom_sampling == 'gh':
 -            import NISE.hamiltonians.params.gauss_hermite as gh
 -            # gaussian-hermite quadrature
 -            # see http://en.wikipedia.org/wiki/Gauss%E2%80%93Hermite_quadrature
 -            # for details
 -            n = dist_params.get('n')
 -            try:
 -                gh.quad[n]
 -            except KeyError:
 -                print 'no table for quadrature of number {0} is available'.format(n)
 -                print 'available quadrature numbers:  {0}'.format(str(gh.quad.keys()))
 -            sigma = dist_params.get('sigma')
 -            self.zeta = np.array(gh.quad[n])[0]
 -            self.zweight = np.array(gh.quad[n])[1]
 -            self.dzeta = 1.
 -            # substitution to inhom variables yields the following scaling:
 -            self.zeta*= np.sqrt(2) * sigma
 -            self.zweight*= np.pi**-0.5
 -        else:
 -            self.zeta = np.array([0])
 -            self.zweight = [1.0]
 -            self.dzeta = 1.0
 -        self.inhom_sampling = inhom_sampling
 -        self.dist_params = dist_params
 | 
