diff options
| -rw-r--r-- | PbSe/chapter.tex | 2 | ||||
| -rw-r--r-- | dissertation.tex | 2 | ||||
| -rw-r--r-- | introduction/chapter.tex | 37 | ||||
| -rw-r--r-- | quantitative_ta/chapter.tex | 78 | ||||
| -rw-r--r-- | spectroscopy/auto/chapter.el | 6 | ||||
| -rw-r--r-- | spectroscopy/chapter.tex | 285 | ||||
| -rw-r--r-- | tg/chapter.tex | 36 | ||||
| -rw-r--r-- | todo.org | 21 | 
8 files changed, 279 insertions, 188 deletions
diff --git a/PbSe/chapter.tex b/PbSe/chapter.tex index c2cb2dc..466a7d9 100644 --- a/PbSe/chapter.tex +++ b/PbSe/chapter.tex @@ -1,3 +1,3 @@ -\chapter{PbSe} +\chapter{PbSe} \label{cha:pbx}  Relevant content from PbSe publications goes here.
\ No newline at end of file diff --git a/dissertation.tex b/dissertation.tex index d8bf32a..875a366 100644 --- a/dissertation.tex +++ b/dissertation.tex @@ -90,6 +90,8 @@ This dissertation is approved by the following members of the Final Oral Committ  %\include{hardware/chapter}
  % TODO: consider inserting WrightTools documentation as PDF
  \include{irf/chapter}
 +\include{quantitative_ta/chapter}
 +\include{tg/chapter}
  %\include{errata/chapter}
  %\include{colophon/chapter}
  \end{appendix}
 diff --git a/introduction/chapter.tex b/introduction/chapter.tex index 109f692..007b95d 100644 --- a/introduction/chapter.tex +++ b/introduction/chapter.tex @@ -1,6 +1,18 @@  \cleardoublepage
  \chapter{Introduction} \label{cha:int}
 +\begin{dquote}
 +  Experience has shown that the experimental implementation of three laser FWM is a formidable task
 +  which is far from complete.  %
 +  Characterization and improvement of existing apparatus must be a integral part of future research
 +  if FWM is to become a viable spectroscopic technique.  %
 +  To this end, it would be helpful to stimulate an atmosphere within the scientific community in
 +  which the method of measurement is considered to be as important as the result of the
 +  measurement.  %
 +  
 +  \dsignature{Roger Carlson \cite{CarlsonRogerJohn1988a}}
 +\end{dquote}
 +  
  % TODO: cool quote, if I can think of one...
  \clearpage
 @@ -165,17 +177,24 @@ These chapters do not directly address improvements to the MR-CMDS methodology,  as case studies in the potential of MR-CMDS and the utility of the improvements described in
  \autoref{prt:development}.  %
 -Chapter [...] describes a series of experiments performed on PbSe quantum dots.
 -PbSe quantum dots are useful because [...]  %
 -We learned [...]  %
 +[PARAGRAPH ABOUT PbSe QUANTUM DOTS]
 -Chapter [...] describes an experiment performed on MoS2.
 -MoS2 is useful because [...]  %
 -We learned [...]  %
 +%Chapter \ref{cha:pbx} describes a series of experiments performed on PbSe quantum dots.  %
 +%Quantum dots are an excellent [STARTING SAMPLE... BEGINNING]
 +%PbSe quantum dots are useful because [...]  %
 +%We learned [...]  %
 -Chapter [...] describes an experiment performed on PEDOT:PSS.
 -useful because...
 -we learned...
 +[PARAGRAPH ABOUT MOS2]
 +
 +%Chapter [...] describes an experiment performed on MoS2.
 +%MoS2 is useful because [...]  %
 +%We learned [...]  %
 +
 +[PARAGRAPH ABOUT PEDOT:PSS]
 +
 +%Chapter [...] describes an experiment performed on PEDOT:PSS.
 +%useful because...
 +%we learned...
  % BJT: consider getting rid of the following paragraph
  % if it remains, it needs to address a more 'broader impacts approach' rather than simply
 diff --git a/quantitative_ta/chapter.tex b/quantitative_ta/chapter.tex new file mode 100644 index 0000000..c8b594d --- /dev/null +++ b/quantitative_ta/chapter.tex @@ -0,0 +1,78 @@ +\chapter{Quantitative transient absorbance} \label{cha:qta} + +\subsubsection{Quantitative TA} + +Transient absorbance (TA) spectroscopy is a self-heterodyned technique.  % +Through chopping you can measure nonlinearities quantitatively much easier than with homodyne +detected (or explicitly heterodyned) experiments. + +\begin{figure} +	\includegraphics[width=\textwidth]{"spectroscopy/TA setup"} +	\label{fig:ta_and_tr_setup} +	\caption{CAPTION TODO} +\end{figure} + +\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample.  % +Here I show measurement of both the reflected and transmitted probe beam \dots not important in +opaque (pyrite) or non-reflective (quantum dot) samples \dots  % + +Typically one attempts to calculate the change in absorbance $\Delta A$ \dots  % + +\begin{eqnarray} +\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\ +&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\ +&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\ +&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\ +&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete} +\end{eqnarray} + +\autoref{eq:ta_complete} simplifies beautifully  if reflectivity is negligible \dots + +Now I define a variable for each experimental measurable: +\begin{center} +	\begin{tabular}{c | l} +		$V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\ +		$V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\ +		$V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\ +		$V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump +	\end{tabular} +\end{center} + +We will need to calibrate using a sample with a known transmisivity and reflectivity constant: +\begin{center} +	\begin{tabular}{c | l} +		$V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\ +		$V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\ +		$\mathcal{T}_\mathrm{ref}$ & transmissivity \\ +		$\mathcal{R}_\mathrm{ref}$ & reflectivity +	\end{tabular} +\end{center} + +Define two new proportionality constants... +\begin{eqnarray} +C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\ +C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}} +\end{eqnarray} +These are explicitly calibrated (as a function of probe color) prior to the experiment using the +calibration sample.  % + +Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$, +$V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$, +$\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in +\autoref{eq:ta_complete} in terms of $I_0$.  % + +\begin{eqnarray} +C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\ +C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\ +I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\ +I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\ +I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\ +I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}} +\end{eqnarray}  + +Wonderfully, the $I_0$ cancels when plugged back in to \autoref{eq:ta_complete}, leaving a final +expression for $\Delta A$ that only depends on my eight measurables.  % + +\begin{equation} +\Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right) +\end{equation}
\ No newline at end of file diff --git a/spectroscopy/auto/chapter.el b/spectroscopy/auto/chapter.el index b067440..f8550da 100644 --- a/spectroscopy/auto/chapter.el +++ b/spectroscopy/auto/chapter.el @@ -3,10 +3,6 @@   (lambda ()     (LaTeX-add-labels      "cha:spc" -    "spc:fig:trive_on_diagonal" -    "spc:fig:trive_off_diagonal" -    "spc:fig:trive_population_transfer" -    "fig:ta_and_tr_setup" -    "eq:ta_complete")) +    "spc:fig:decongestion"))   :latex) diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex index 2cf088b..a70cd69 100644 --- a/spectroscopy/chapter.tex +++ b/spectroscopy/chapter.tex @@ -147,193 +147,150 @@ WMEL diagrams are drawn using the following rules.  %  Representative WMELs can be found in Figures [xxxxxx].  %
 -% TODO: representative WMEL?
 -
  \section{Types of spectroscopy}  % ================================================================
  Scientists have come up with many ways of exploiting light-matter interaction for measurement
  purposes.  %
  This section discusses several of these strategies.  %
  I start broadly, by comparing and contrasting differences across categories of spectroscopies.  %
 -I then go into relevant detail regarding a few experiments that are particularly relevant in this
 +I then go into detail regarding a few experiments that are particularly relevant to this
  dissertation.  %
  \subsection{Linear vs multidimensional}  % --------------------------------------------------------
 -This derivation adapted from \textit{Optical Processes in Semiconductors} by Jacques I. Pankove
 -\cite{PankoveJacques1975a}.  %
 -For normal incidence, the reflection coefficient is
 -\begin{equation}
 -R = \frac{(n-1)^2+k^2}{(n+1)^2+k^2}
 -\end{equation}
 -% TODO: finish derivation
 -
 -Further derivation adapted from \cite{KumarNardeep2013a}.  %
 -To extend reflectivity to a differential measurement
 -% TODO: finish derivation
 -
 -% TODO: (maybe) include discussion of photon echo famously discovered in 1979 in Groningen
 -
 -% TODO: spectral congestion figure
 +Most familiar spectroscopic experiments are linear.  %
 +That is to say, they have just one frequency axis, and they interrogate just one resonance
 +condition.  %
 +These are workhorse experiments, like absorbance, reflectance, FTIR, UV-Vis, and common old
 +ordinary Raman spectroscopy (COORS).  %
 +These experiments are incredibly robust, and are typically performed using easy to use commercial
 +desktop instruments.  %
 +There are now even handheld Raman spectrometers for use in industrial settings. [CITE]  %
 +
 +Multidimensional spectroscopy contains a lot more information about the material under
 +investigation.  %
 +In this work, by ``multidimensional'' I mean higher-order spectroscopy.  %
 +I ignore ``correlation spectroscopy'' [CITE], which tracks linear spectral features against
 +non-spectral dimensions like lab time, pressure, and temperature.  %
 +So, in the context of this dissertation, multidimensional spectroscopy is synonymous with nonlinear
 +spectroscopy.  %
  Nonlinear spectroscopy relies upon higher-order terms in the light-matter interaction. In a generic
  system, each term is roughly ten times smaller than the last.  % TODO: cite?
 +This means that nonlinear spectroscopy is typically very weak.  %
 +Still, nonlinear signals are fairly easy to isolate and measure using modern instrumentation, as
 +this dissertation describes.  %
 -TODO: Basic ``advantage of dimensionality'' figure.
 -
 -\subsection{Homodyne vs heterodyne}  % ------------------------------------------------------------
 -
 -Two kinds of spectroscopies: 1) heterodyne 2) homodyne.
 -Heterodyne techniques may be self heterodyne or explicitly heterodyned with a local
 -oscillator.
 -
 -In all heterodyne spectroscopies, signal goes as $N$.  %
 -In all homodyne spectroscopies, signal goes as $N^2$.  %
 -This literally means that homodyne signals go as the square of heterodyne signals, which is what we
 -mean when we say that homodyne signals are intensity level and heterodyne signals are amplitude
 -level.
 -
 -Homodyne dynamics go faster: cite Darien correction
 -
 -\subsection{Frequency vs time domain}  % ----------------------------------------------------------
 -
 -Time domain techniques become more and more difficult when large frequency bandwidths are
 -needed.  %
 -With very short, broad pulses:  %
 -\begin{itemize}
 -	\item Non-resonant signal becomes brighter relative to resonant signal
 -	\item Pulse distortions become important.
 -\end{itemize}
 -
 -This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and
 -shorter pulses \cite{ChengJixin2001a}.  %
 -
 -An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was
 -published by \textcite{SpencerAustinP2015a}.  %
 -
 -Another idea in defense of frequency domain is for the case of power studies.  %
 -Since time-domain pulses in-fact possess all colors in them they cannot be trusted as much at
 -perturbative fluence.  %
 -See that paper that Natalia presented...  %
 -
 -See Paul's dissertation
 -
 -\subsection{Transient grating}  % -----------------------------------------------------------------
 -
 -Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM
 -experiment in the Wright Group.  %
 -
 -% TODO: On and off-diagonal TrEE pathways
 -
 -% TODO: Discussion of old and current delay space
 -
 -% TODO: discuss current delay space physical conventions (see inbox)
 -
 -\begin{figure}
 -  \includegraphics[scale=1]{"spectroscopy/wmels/trive_on_diagonal"}
 -  \caption[CAPTION TODO]{
 -    CAPTION TODO
 -  }
 -  \label{spc:fig:trive_on_diagonal}
 -\end{figure}
 -
 +The most obvious advantage of multidimensional spectroscopy comes directly from the dimensionality
 +itself.  %
 +Multidimensional spectroscopy can \emph{decongest} spectra with overlapping peaks by isolating
 +peaks in a multidimensional resonance landscape.  %
 +Figure \ref{spc:fig:decongestion} shows...
  \begin{figure}
 -  \includegraphics[scale=1]{"spectroscopy/wmels/trive_off_diagonal"}
 -  \caption[CAPTION TODO]{
 -    CAPTION TODO
 +  \caption[Dimensionality and decongestion.]{
 +    CAPTION TODO.
    }
 -  \label{spc:fig:trive_off_diagonal}
 -\end{figure}
 -
 -\begin{figure}
 -  \includegraphics[scale=1]{"spectroscopy/wmels/trive_population_transfer"}
 -  \caption[CAPTION TODO]{
 -    CAPTION TODO
 -  }
 -  \label{spc:fig:trive_population_transfer}
 -\end{figure}
 -
 -\subsection{Transient absorbance}  % --------------------------------------------------------------
 -
 -\subsubsection{Quantitative TA}
 -
 -Transient absorbance (TA) spectroscopy is a self-heterodyned technique.  %
 -Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
 -detected (or explicitly heterodyned) experiments.
 -
 -\begin{figure}
 -	\includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
 -	\label{fig:ta_and_tr_setup}
 -	\caption{CAPTION TODO}
 +  \label{spc:fig:decongestion}
  \end{figure}
 -\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample.  %
 -Here I show measurement of both the reflected and transmitted probe beam \dots not important in
 -opaque (pyrite) or non-reflective (quantum dot) samples \dots  %
 -
 -Typically one attempts to calculate the change in absorbance $\Delta A$ \dots  %
 -
 -\begin{eqnarray}
 -\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\
 -&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
 -&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\
 -&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\
 -&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete}
 -\end{eqnarray}
 -
 -\autoref{eq:ta_complete} simplifies beautifully  if reflectivity is negligible \dots
 -
 -Now I define a variable for each experimental measurable:
 -\begin{center}
 -	\begin{tabular}{c | l}
 -		$V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\
 -		$V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\
 -		$V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\
 -		$V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump
 -	\end{tabular}
 -\end{center}
 -
 -We will need to calibrate using a sample with a known transmisivity and reflectivity constant:
 -\begin{center}
 -	\begin{tabular}{c | l}
 -		$V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\
 -		$V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\
 -		$\mathcal{T}_\mathrm{ref}$ & transmissivity \\
 -		$\mathcal{R}_\mathrm{ref}$ & reflectivity
 -	\end{tabular}
 -\end{center}
 -
 -Define two new proportionality constants...
 -\begin{eqnarray}
 -C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\
 -C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}}
 -\end{eqnarray}
 -These are explicitly calibrated (as a function of probe color) prior to the experiment using the
 -calibration sample.  %
 +\subsection{Frequency vs time domain}  % ----------------------------------------------------------
 -Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$,
 -$V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$,
 -$\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in
 -\autoref{eq:ta_complete} in terms of $I_0$.  %
 +Broadly, there are two ways to collect nonlinear spectroscopic signals: frequency and time
 +domain.  %
 +Both techniques involve exciting a sample with multiple pulses of light and measuring the output
 +signal.  %
 +The techniques differ in how they resolve the multiple frequency axes of interest.  %
 +
 +Frequency domain is probably the more intuitive strategy: frequency axes are resolved directly by
 +iteratively tuning the frequency of excitation pulses against each-other.  %
 +This relies on pulsed light sources with tunable frequencies.  %
 +
 +Time domain experiments use an interferometric technique to resolve frequency axes.  %
 +Broadband excitation pulses which contain all of the necessary frequencies are used to excite the
 +sample.  %
 +The delay (time) between pulses is scanned, and the resonances along that axis are resolved through
 +Fourier transform of the resulting interferogram.  %
 +In modern experiments, pulse shapers are used to control the delay between pulses in a very
 +precise, fast, and reproducible way.  %
 +The time domain strategy is by-far the most popular technique in multidimensional spectroscopy
 +because these technologies allow for rapid, robust data collection.  %
 +
 +This dissertation focuses on frequency domain strategies, so some discussion of the advantages of
 +frequency domain when compared to time domain are warranted.  %
 +
 +One of the biggest instrumental limitations of multidimensional spectroscopy is bandwidth.  %
 +It is easy to get absorbance spectra over the entire visible spectrum, and even into the
 +ultraviolet and near infrared.  %
 +Multidimensional spectroscopy is limited by the bandwidth of our (tunable) light sources.  %
 +For frequency domain techniques, this limitation is incidental: sources with greater tunability
 +will be easy to incorporate into these instruments, and creating such sources is only a matter of
 +more optomechanical engineering.  %
 +Time domain techniques, on the other hand, have a more fundamental issue with bandwidth.  %
 +Time domain requires that all of the desired frequencies be present within the single excitation
 +pulse, and pulses with very large frequency bandwidth (very short in time) become very hard to use
 +and control.   %
 +With short, broad pulses:
 +\begin{ditemize}
 +	\item Non-resonant signal becomes brighter relative to resonant signal. [CITE]
 +	\item Pulse distortions become important. [CITE JONAS]
 +\end{ditemize}
 +%This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and
 +%shorter pulses \cite{ChengJixin2001a}.  %
 +%An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was
 +%published by \textcite{SpencerAustinP2015a}.  %
 +%See Paul's dissertation
 +
 +Time domain experiments require a phase-locked, independently controlled local oscillator in order
 +to collect the interferogram at the heart of such techniques.  %
 +This local oscillator enhances the information-gathering power of time domain because it allows the
 +experiment to explicitly collect nonlinear spectra with full phase information.  %
 +At the same time, the local oscillator requirement limits the flexability of the time-domain
 +because it essentially requires that the output frequency must be the same as one of the inputs.  %
 +Novel, often fully coherent, experiments cannot be accomplished under this limitation.  %
 +
 +%Another idea in defense of frequency domain is for the case of power studies.  %
 +%Since time-domain pulses in-fact possess all colors in them they cannot be trusted as much at
 +%perturbative fluence.  %
 +%See that paper that Natalia presented...  %
 -\begin{eqnarray}
 -C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\
 -C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\
 -I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\
 -I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\
 -I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\
 -I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}}
 -\end{eqnarray} 
 -
 -Wonderfully, the $I_0$ cancels when plugged back in to \autoref{eq:ta_complete}, leaving a final
 -expression for $\Delta A$ that only depends on my eight measurables.  %
 +\subsection{Homodyne vs heterodyne}  % ------------------------------------------------------------
 -\begin{equation}
 -\Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right)
 -\end{equation}
 +Within frequency domain multidimensional spectroscopy, one is free to use or forgo a local
 +oscillator.  %
 +That is to say, frequency domain spectroscopy can be collected in a heterodyne or homodyne
 +technique.  %
 +As discussed in the previous section, use of a local oscillator means that more useful phase
 +information can be extracted from the spectrum.  %
 +At the same time, generation of a phase locked, controllable local oscillator can be cumbersome,
 +limiting the flexibility of possible experiments.  %
 +
 +Note that heterodyne techniques may be self heterodyned (as in transient absorption) or
 +``explicitly'' heterodyned with a local oscillator.  %
 +
 +Besides the aforementioned phase information, probably the biggest difference between heterodyne
 +and homodyne-detected experiments is their scaling with oscillator number density, $N$.  %
 +In all heterodyne spectroscopies, signal goes linearly, as $N$.  %
 +If the number of oscillators is doubled, the signal doubles.  %
 +In all homodyne spectroscopies, signal goes as $N^2$.  %
 +If the number of oscillators is doubled, the signal goes up by four times.  %
 +This is what we mean when we say that homodyne signals are ``intensity level'' and heterodyne
 +signals are ``amplitude level''.  %
 +
 +Recently we have been taking to representing homodyne-detected multidimensional experiments on the
 +``amplitude level'' by plotting the square root of the collected signal.  %
 +Many of the figures in this dissertation are plotted in this way.  %
 +In my opinion, this strategy makes interpretation of spectra easier.  %
 +Certainly it eases comparison with other experiments, like absorbance and COORS, which go as
 +$N$.  %
 +
 +One easy-to-miss consequence of homodyne collected experiments is the behavior of signals in delay
 +space.  %
 +Since signal goes as $N^2$, signal decays much faster in homodyne-collected experiments.  %
 +If signal decays as a single exponential, the extracted decay is twice as fast for homodyne vs
 +heterodyne-detected data.  %
 +[CITE DARIEN CORRECTION]
 -\clearpage
  \section{Instrumentation}  % ======================================================================
  In this section I introduce the key components of the MR-CMDS instrument.  %
 diff --git a/tg/chapter.tex b/tg/chapter.tex new file mode 100644 index 0000000..7d7ac4d --- /dev/null +++ b/tg/chapter.tex @@ -0,0 +1,36 @@ +\chapter{Transient grating} \label{cha:trg} + +Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM +experiment in the Wright Group.  % + +% TODO: On and off-diagonal TrEE pathways + +% TODO: Discussion of old and current delay space + +% TODO: discuss current delay space physical conventions (see inbox) + +\begin{figure} +  \includegraphics[scale=1]{"spectroscopy/wmels/trive_on_diagonal"} +  \caption[CAPTION TODO]{ +    CAPTION TODO +  } +  \label{spc:fig:trive_on_diagonal} +\end{figure} + + +\begin{figure} +  \includegraphics[scale=1]{"spectroscopy/wmels/trive_off_diagonal"} +  \caption[CAPTION TODO]{ +    CAPTION TODO +  } +  \label{spc:fig:trive_off_diagonal} +\end{figure} + +\begin{figure} +  \includegraphics[scale=1]{"spectroscopy/wmels/trive_population_transfer"} +  \caption[CAPTION TODO]{ +    CAPTION TODO +  } +  \label{spc:fig:trive_population_transfer} +\end{figure} + @@ -1,22 +1,25 @@  * DONE draft challenges section                                    :software:    CLOSED: [2018-04-05 Thu 09:12] +* DONE quote from RC                                           :introduction: +  CLOSED: [2018-04-07 Sat 11:20] +* TODO dichotomies                                             :spectroscopy: +* TODO describe spectroscopic instrument                       :spectroscopy: +* TODO incorporate "most software is not peer reviewed"            :software: +** see Joppa reference 6 +* TODO incorporate idea "most people over-trust software"          :software: +* TODO incorporate StoddenVictoria2016a                            :software: +* TODO incorporate all references                                  :software:  * TODO citations                                                   :abstract:  * TODO "quadrants of complexity" idea                           :acquisition:  ** TODO figure  ** TODO arguments  * TODO tables                                                    :processing: -* TODO summarize PbSe chapter                                  :introduction: -* TODO summarize MX2 chapter                                   :introduction: -* TODO summarize PEDOT:PSS chapter                             :introduction:  * TODO distribution section                                      :processing:  * TODO development section                                       :processing: -* TODO incorporate "most software is not peer reviewed"            :software: -** see Joppa reference 6 -* TODO incorporate idea "most people over-trust software"          :software: -* TODO incorporate StoddenVictoria2016a                            :software: -* TODO incorporate all references                                  :software: -* TODO quote from RC                                           :introduction:  * TODO insert content                                                  :PbSe: +* TODO summarize PbSe chapter                                  :introduction: +* TODO summarize MX2 chapter                                   :introduction: +* TODO summarize PEDOT:PSS chapter                             :introduction:  * TODO insert content from SI                                  :mixed_domain:  * IDEA 2D delay example from ps system                               :active:  * IDEA consider refactoring or expanding OOP section               :software:  | 
