aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--PbSe/chapter.tex2
-rw-r--r--dissertation.tex2
-rw-r--r--introduction/chapter.tex37
-rw-r--r--quantitative_ta/chapter.tex78
-rw-r--r--spectroscopy/auto/chapter.el6
-rw-r--r--spectroscopy/chapter.tex285
-rw-r--r--tg/chapter.tex36
-rw-r--r--todo.org21
8 files changed, 279 insertions, 188 deletions
diff --git a/PbSe/chapter.tex b/PbSe/chapter.tex
index c2cb2dc..466a7d9 100644
--- a/PbSe/chapter.tex
+++ b/PbSe/chapter.tex
@@ -1,3 +1,3 @@
-\chapter{PbSe}
+\chapter{PbSe} \label{cha:pbx}
Relevant content from PbSe publications goes here. \ No newline at end of file
diff --git a/dissertation.tex b/dissertation.tex
index d8bf32a..875a366 100644
--- a/dissertation.tex
+++ b/dissertation.tex
@@ -90,6 +90,8 @@ This dissertation is approved by the following members of the Final Oral Committ
%\include{hardware/chapter}
% TODO: consider inserting WrightTools documentation as PDF
\include{irf/chapter}
+\include{quantitative_ta/chapter}
+\include{tg/chapter}
%\include{errata/chapter}
%\include{colophon/chapter}
\end{appendix}
diff --git a/introduction/chapter.tex b/introduction/chapter.tex
index 109f692..007b95d 100644
--- a/introduction/chapter.tex
+++ b/introduction/chapter.tex
@@ -1,6 +1,18 @@
\cleardoublepage
\chapter{Introduction} \label{cha:int}
+\begin{dquote}
+ Experience has shown that the experimental implementation of three laser FWM is a formidable task
+ which is far from complete. %
+ Characterization and improvement of existing apparatus must be a integral part of future research
+ if FWM is to become a viable spectroscopic technique. %
+ To this end, it would be helpful to stimulate an atmosphere within the scientific community in
+ which the method of measurement is considered to be as important as the result of the
+ measurement. %
+
+ \dsignature{Roger Carlson \cite{CarlsonRogerJohn1988a}}
+\end{dquote}
+
% TODO: cool quote, if I can think of one...
\clearpage
@@ -165,17 +177,24 @@ These chapters do not directly address improvements to the MR-CMDS methodology,
as case studies in the potential of MR-CMDS and the utility of the improvements described in
\autoref{prt:development}. %
-Chapter [...] describes a series of experiments performed on PbSe quantum dots.
-PbSe quantum dots are useful because [...] %
-We learned [...] %
+[PARAGRAPH ABOUT PbSe QUANTUM DOTS]
-Chapter [...] describes an experiment performed on MoS2.
-MoS2 is useful because [...] %
-We learned [...] %
+%Chapter \ref{cha:pbx} describes a series of experiments performed on PbSe quantum dots. %
+%Quantum dots are an excellent [STARTING SAMPLE... BEGINNING]
+%PbSe quantum dots are useful because [...] %
+%We learned [...] %
-Chapter [...] describes an experiment performed on PEDOT:PSS.
-useful because...
-we learned...
+[PARAGRAPH ABOUT MOS2]
+
+%Chapter [...] describes an experiment performed on MoS2.
+%MoS2 is useful because [...] %
+%We learned [...] %
+
+[PARAGRAPH ABOUT PEDOT:PSS]
+
+%Chapter [...] describes an experiment performed on PEDOT:PSS.
+%useful because...
+%we learned...
% BJT: consider getting rid of the following paragraph
% if it remains, it needs to address a more 'broader impacts approach' rather than simply
diff --git a/quantitative_ta/chapter.tex b/quantitative_ta/chapter.tex
new file mode 100644
index 0000000..c8b594d
--- /dev/null
+++ b/quantitative_ta/chapter.tex
@@ -0,0 +1,78 @@
+\chapter{Quantitative transient absorbance} \label{cha:qta}
+
+\subsubsection{Quantitative TA}
+
+Transient absorbance (TA) spectroscopy is a self-heterodyned technique. %
+Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
+detected (or explicitly heterodyned) experiments.
+
+\begin{figure}
+ \includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
+ \label{fig:ta_and_tr_setup}
+ \caption{CAPTION TODO}
+\end{figure}
+
+\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. %
+Here I show measurement of both the reflected and transmitted probe beam \dots not important in
+opaque (pyrite) or non-reflective (quantum dot) samples \dots %
+
+Typically one attempts to calculate the change in absorbance $\Delta A$ \dots %
+
+\begin{eqnarray}
+\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\
+&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
+&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\
+&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\
+&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete}
+\end{eqnarray}
+
+\autoref{eq:ta_complete} simplifies beautifully if reflectivity is negligible \dots
+
+Now I define a variable for each experimental measurable:
+\begin{center}
+ \begin{tabular}{c | l}
+ $V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\
+ $V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\
+ $V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\
+ $V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump
+ \end{tabular}
+\end{center}
+
+We will need to calibrate using a sample with a known transmisivity and reflectivity constant:
+\begin{center}
+ \begin{tabular}{c | l}
+ $V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\
+ $V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\
+ $\mathcal{T}_\mathrm{ref}$ & transmissivity \\
+ $\mathcal{R}_\mathrm{ref}$ & reflectivity
+ \end{tabular}
+\end{center}
+
+Define two new proportionality constants...
+\begin{eqnarray}
+C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\
+C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}}
+\end{eqnarray}
+These are explicitly calibrated (as a function of probe color) prior to the experiment using the
+calibration sample. %
+
+Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$,
+$V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$,
+$\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in
+\autoref{eq:ta_complete} in terms of $I_0$. %
+
+\begin{eqnarray}
+C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\
+C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\
+I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\
+I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\
+I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\
+I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}}
+\end{eqnarray}
+
+Wonderfully, the $I_0$ cancels when plugged back in to \autoref{eq:ta_complete}, leaving a final
+expression for $\Delta A$ that only depends on my eight measurables. %
+
+\begin{equation}
+\Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right)
+\end{equation} \ No newline at end of file
diff --git a/spectroscopy/auto/chapter.el b/spectroscopy/auto/chapter.el
index b067440..f8550da 100644
--- a/spectroscopy/auto/chapter.el
+++ b/spectroscopy/auto/chapter.el
@@ -3,10 +3,6 @@
(lambda ()
(LaTeX-add-labels
"cha:spc"
- "spc:fig:trive_on_diagonal"
- "spc:fig:trive_off_diagonal"
- "spc:fig:trive_population_transfer"
- "fig:ta_and_tr_setup"
- "eq:ta_complete"))
+ "spc:fig:decongestion"))
:latex)
diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex
index 2cf088b..a70cd69 100644
--- a/spectroscopy/chapter.tex
+++ b/spectroscopy/chapter.tex
@@ -147,193 +147,150 @@ WMEL diagrams are drawn using the following rules. %
Representative WMELs can be found in Figures [xxxxxx]. %
-% TODO: representative WMEL?
-
\section{Types of spectroscopy} % ================================================================
Scientists have come up with many ways of exploiting light-matter interaction for measurement
purposes. %
This section discusses several of these strategies. %
I start broadly, by comparing and contrasting differences across categories of spectroscopies. %
-I then go into relevant detail regarding a few experiments that are particularly relevant in this
+I then go into detail regarding a few experiments that are particularly relevant to this
dissertation. %
\subsection{Linear vs multidimensional} % --------------------------------------------------------
-This derivation adapted from \textit{Optical Processes in Semiconductors} by Jacques I. Pankove
-\cite{PankoveJacques1975a}. %
-For normal incidence, the reflection coefficient is
-\begin{equation}
-R = \frac{(n-1)^2+k^2}{(n+1)^2+k^2}
-\end{equation}
-% TODO: finish derivation
-
-Further derivation adapted from \cite{KumarNardeep2013a}. %
-To extend reflectivity to a differential measurement
-% TODO: finish derivation
-
-% TODO: (maybe) include discussion of photon echo famously discovered in 1979 in Groningen
-
-% TODO: spectral congestion figure
+Most familiar spectroscopic experiments are linear. %
+That is to say, they have just one frequency axis, and they interrogate just one resonance
+condition. %
+These are workhorse experiments, like absorbance, reflectance, FTIR, UV-Vis, and common old
+ordinary Raman spectroscopy (COORS). %
+These experiments are incredibly robust, and are typically performed using easy to use commercial
+desktop instruments. %
+There are now even handheld Raman spectrometers for use in industrial settings. [CITE] %
+
+Multidimensional spectroscopy contains a lot more information about the material under
+investigation. %
+In this work, by ``multidimensional'' I mean higher-order spectroscopy. %
+I ignore ``correlation spectroscopy'' [CITE], which tracks linear spectral features against
+non-spectral dimensions like lab time, pressure, and temperature. %
+So, in the context of this dissertation, multidimensional spectroscopy is synonymous with nonlinear
+spectroscopy. %
Nonlinear spectroscopy relies upon higher-order terms in the light-matter interaction. In a generic
system, each term is roughly ten times smaller than the last. % TODO: cite?
+This means that nonlinear spectroscopy is typically very weak. %
+Still, nonlinear signals are fairly easy to isolate and measure using modern instrumentation, as
+this dissertation describes. %
-TODO: Basic ``advantage of dimensionality'' figure.
-
-\subsection{Homodyne vs heterodyne} % ------------------------------------------------------------
-
-Two kinds of spectroscopies: 1) heterodyne 2) homodyne.
-Heterodyne techniques may be self heterodyne or explicitly heterodyned with a local
-oscillator.
-
-In all heterodyne spectroscopies, signal goes as $N$. %
-In all homodyne spectroscopies, signal goes as $N^2$. %
-This literally means that homodyne signals go as the square of heterodyne signals, which is what we
-mean when we say that homodyne signals are intensity level and heterodyne signals are amplitude
-level.
-
-Homodyne dynamics go faster: cite Darien correction
-
-\subsection{Frequency vs time domain} % ----------------------------------------------------------
-
-Time domain techniques become more and more difficult when large frequency bandwidths are
-needed. %
-With very short, broad pulses: %
-\begin{itemize}
- \item Non-resonant signal becomes brighter relative to resonant signal
- \item Pulse distortions become important.
-\end{itemize}
-
-This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and
-shorter pulses \cite{ChengJixin2001a}. %
-
-An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was
-published by \textcite{SpencerAustinP2015a}. %
-
-Another idea in defense of frequency domain is for the case of power studies. %
-Since time-domain pulses in-fact possess all colors in them they cannot be trusted as much at
-perturbative fluence. %
-See that paper that Natalia presented... %
-
-See Paul's dissertation
-
-\subsection{Transient grating} % -----------------------------------------------------------------
-
-Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM
-experiment in the Wright Group. %
-
-% TODO: On and off-diagonal TrEE pathways
-
-% TODO: Discussion of old and current delay space
-
-% TODO: discuss current delay space physical conventions (see inbox)
-
-\begin{figure}
- \includegraphics[scale=1]{"spectroscopy/wmels/trive_on_diagonal"}
- \caption[CAPTION TODO]{
- CAPTION TODO
- }
- \label{spc:fig:trive_on_diagonal}
-\end{figure}
-
+The most obvious advantage of multidimensional spectroscopy comes directly from the dimensionality
+itself. %
+Multidimensional spectroscopy can \emph{decongest} spectra with overlapping peaks by isolating
+peaks in a multidimensional resonance landscape. %
+Figure \ref{spc:fig:decongestion} shows...
\begin{figure}
- \includegraphics[scale=1]{"spectroscopy/wmels/trive_off_diagonal"}
- \caption[CAPTION TODO]{
- CAPTION TODO
+ \caption[Dimensionality and decongestion.]{
+ CAPTION TODO.
}
- \label{spc:fig:trive_off_diagonal}
-\end{figure}
-
-\begin{figure}
- \includegraphics[scale=1]{"spectroscopy/wmels/trive_population_transfer"}
- \caption[CAPTION TODO]{
- CAPTION TODO
- }
- \label{spc:fig:trive_population_transfer}
-\end{figure}
-
-\subsection{Transient absorbance} % --------------------------------------------------------------
-
-\subsubsection{Quantitative TA}
-
-Transient absorbance (TA) spectroscopy is a self-heterodyned technique. %
-Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
-detected (or explicitly heterodyned) experiments.
-
-\begin{figure}
- \includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
- \label{fig:ta_and_tr_setup}
- \caption{CAPTION TODO}
+ \label{spc:fig:decongestion}
\end{figure}
-\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. %
-Here I show measurement of both the reflected and transmitted probe beam \dots not important in
-opaque (pyrite) or non-reflective (quantum dot) samples \dots %
-
-Typically one attempts to calculate the change in absorbance $\Delta A$ \dots %
-
-\begin{eqnarray}
-\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\
-&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
-&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\
-&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\
-&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete}
-\end{eqnarray}
-
-\autoref{eq:ta_complete} simplifies beautifully if reflectivity is negligible \dots
-
-Now I define a variable for each experimental measurable:
-\begin{center}
- \begin{tabular}{c | l}
- $V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\
- $V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\
- $V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\
- $V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump
- \end{tabular}
-\end{center}
-
-We will need to calibrate using a sample with a known transmisivity and reflectivity constant:
-\begin{center}
- \begin{tabular}{c | l}
- $V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\
- $V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\
- $\mathcal{T}_\mathrm{ref}$ & transmissivity \\
- $\mathcal{R}_\mathrm{ref}$ & reflectivity
- \end{tabular}
-\end{center}
-
-Define two new proportionality constants...
-\begin{eqnarray}
-C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\
-C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}}
-\end{eqnarray}
-These are explicitly calibrated (as a function of probe color) prior to the experiment using the
-calibration sample. %
+\subsection{Frequency vs time domain} % ----------------------------------------------------------
-Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$,
-$V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$,
-$\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in
-\autoref{eq:ta_complete} in terms of $I_0$. %
+Broadly, there are two ways to collect nonlinear spectroscopic signals: frequency and time
+domain. %
+Both techniques involve exciting a sample with multiple pulses of light and measuring the output
+signal. %
+The techniques differ in how they resolve the multiple frequency axes of interest. %
+
+Frequency domain is probably the more intuitive strategy: frequency axes are resolved directly by
+iteratively tuning the frequency of excitation pulses against each-other. %
+This relies on pulsed light sources with tunable frequencies. %
+
+Time domain experiments use an interferometric technique to resolve frequency axes. %
+Broadband excitation pulses which contain all of the necessary frequencies are used to excite the
+sample. %
+The delay (time) between pulses is scanned, and the resonances along that axis are resolved through
+Fourier transform of the resulting interferogram. %
+In modern experiments, pulse shapers are used to control the delay between pulses in a very
+precise, fast, and reproducible way. %
+The time domain strategy is by-far the most popular technique in multidimensional spectroscopy
+because these technologies allow for rapid, robust data collection. %
+
+This dissertation focuses on frequency domain strategies, so some discussion of the advantages of
+frequency domain when compared to time domain are warranted. %
+
+One of the biggest instrumental limitations of multidimensional spectroscopy is bandwidth. %
+It is easy to get absorbance spectra over the entire visible spectrum, and even into the
+ultraviolet and near infrared. %
+Multidimensional spectroscopy is limited by the bandwidth of our (tunable) light sources. %
+For frequency domain techniques, this limitation is incidental: sources with greater tunability
+will be easy to incorporate into these instruments, and creating such sources is only a matter of
+more optomechanical engineering. %
+Time domain techniques, on the other hand, have a more fundamental issue with bandwidth. %
+Time domain requires that all of the desired frequencies be present within the single excitation
+pulse, and pulses with very large frequency bandwidth (very short in time) become very hard to use
+and control. %
+With short, broad pulses:
+\begin{ditemize}
+ \item Non-resonant signal becomes brighter relative to resonant signal. [CITE]
+ \item Pulse distortions become important. [CITE JONAS]
+\end{ditemize}
+%This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and
+%shorter pulses \cite{ChengJixin2001a}. %
+%An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was
+%published by \textcite{SpencerAustinP2015a}. %
+%See Paul's dissertation
+
+Time domain experiments require a phase-locked, independently controlled local oscillator in order
+to collect the interferogram at the heart of such techniques. %
+This local oscillator enhances the information-gathering power of time domain because it allows the
+experiment to explicitly collect nonlinear spectra with full phase information. %
+At the same time, the local oscillator requirement limits the flexability of the time-domain
+because it essentially requires that the output frequency must be the same as one of the inputs. %
+Novel, often fully coherent, experiments cannot be accomplished under this limitation. %
+
+%Another idea in defense of frequency domain is for the case of power studies. %
+%Since time-domain pulses in-fact possess all colors in them they cannot be trusted as much at
+%perturbative fluence. %
+%See that paper that Natalia presented... %
-\begin{eqnarray}
-C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\
-C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\
-I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\
-I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\
-I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\
-I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}}
-\end{eqnarray}
-
-Wonderfully, the $I_0$ cancels when plugged back in to \autoref{eq:ta_complete}, leaving a final
-expression for $\Delta A$ that only depends on my eight measurables. %
+\subsection{Homodyne vs heterodyne} % ------------------------------------------------------------
-\begin{equation}
-\Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right)
-\end{equation}
+Within frequency domain multidimensional spectroscopy, one is free to use or forgo a local
+oscillator. %
+That is to say, frequency domain spectroscopy can be collected in a heterodyne or homodyne
+technique. %
+As discussed in the previous section, use of a local oscillator means that more useful phase
+information can be extracted from the spectrum. %
+At the same time, generation of a phase locked, controllable local oscillator can be cumbersome,
+limiting the flexibility of possible experiments. %
+
+Note that heterodyne techniques may be self heterodyned (as in transient absorption) or
+``explicitly'' heterodyned with a local oscillator. %
+
+Besides the aforementioned phase information, probably the biggest difference between heterodyne
+and homodyne-detected experiments is their scaling with oscillator number density, $N$. %
+In all heterodyne spectroscopies, signal goes linearly, as $N$. %
+If the number of oscillators is doubled, the signal doubles. %
+In all homodyne spectroscopies, signal goes as $N^2$. %
+If the number of oscillators is doubled, the signal goes up by four times. %
+This is what we mean when we say that homodyne signals are ``intensity level'' and heterodyne
+signals are ``amplitude level''. %
+
+Recently we have been taking to representing homodyne-detected multidimensional experiments on the
+``amplitude level'' by plotting the square root of the collected signal. %
+Many of the figures in this dissertation are plotted in this way. %
+In my opinion, this strategy makes interpretation of spectra easier. %
+Certainly it eases comparison with other experiments, like absorbance and COORS, which go as
+$N$. %
+
+One easy-to-miss consequence of homodyne collected experiments is the behavior of signals in delay
+space. %
+Since signal goes as $N^2$, signal decays much faster in homodyne-collected experiments. %
+If signal decays as a single exponential, the extracted decay is twice as fast for homodyne vs
+heterodyne-detected data. %
+[CITE DARIEN CORRECTION]
-\clearpage
\section{Instrumentation} % ======================================================================
In this section I introduce the key components of the MR-CMDS instrument. %
diff --git a/tg/chapter.tex b/tg/chapter.tex
new file mode 100644
index 0000000..7d7ac4d
--- /dev/null
+++ b/tg/chapter.tex
@@ -0,0 +1,36 @@
+\chapter{Transient grating} \label{cha:trg}
+
+Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM
+experiment in the Wright Group. %
+
+% TODO: On and off-diagonal TrEE pathways
+
+% TODO: Discussion of old and current delay space
+
+% TODO: discuss current delay space physical conventions (see inbox)
+
+\begin{figure}
+ \includegraphics[scale=1]{"spectroscopy/wmels/trive_on_diagonal"}
+ \caption[CAPTION TODO]{
+ CAPTION TODO
+ }
+ \label{spc:fig:trive_on_diagonal}
+\end{figure}
+
+
+\begin{figure}
+ \includegraphics[scale=1]{"spectroscopy/wmels/trive_off_diagonal"}
+ \caption[CAPTION TODO]{
+ CAPTION TODO
+ }
+ \label{spc:fig:trive_off_diagonal}
+\end{figure}
+
+\begin{figure}
+ \includegraphics[scale=1]{"spectroscopy/wmels/trive_population_transfer"}
+ \caption[CAPTION TODO]{
+ CAPTION TODO
+ }
+ \label{spc:fig:trive_population_transfer}
+\end{figure}
+
diff --git a/todo.org b/todo.org
index d32af20..fef9ecc 100644
--- a/todo.org
+++ b/todo.org
@@ -1,22 +1,25 @@
* DONE draft challenges section :software:
CLOSED: [2018-04-05 Thu 09:12]
+* DONE quote from RC :introduction:
+ CLOSED: [2018-04-07 Sat 11:20]
+* TODO dichotomies :spectroscopy:
+* TODO describe spectroscopic instrument :spectroscopy:
+* TODO incorporate "most software is not peer reviewed" :software:
+** see Joppa reference 6
+* TODO incorporate idea "most people over-trust software" :software:
+* TODO incorporate StoddenVictoria2016a :software:
+* TODO incorporate all references :software:
* TODO citations :abstract:
* TODO "quadrants of complexity" idea :acquisition:
** TODO figure
** TODO arguments
* TODO tables :processing:
-* TODO summarize PbSe chapter :introduction:
-* TODO summarize MX2 chapter :introduction:
-* TODO summarize PEDOT:PSS chapter :introduction:
* TODO distribution section :processing:
* TODO development section :processing:
-* TODO incorporate "most software is not peer reviewed" :software:
-** see Joppa reference 6
-* TODO incorporate idea "most people over-trust software" :software:
-* TODO incorporate StoddenVictoria2016a :software:
-* TODO incorporate all references :software:
-* TODO quote from RC :introduction:
* TODO insert content :PbSe:
+* TODO summarize PbSe chapter :introduction:
+* TODO summarize MX2 chapter :introduction:
+* TODO summarize PEDOT:PSS chapter :introduction:
* TODO insert content from SI :mixed_domain:
* IDEA 2D delay example from ps system :active:
* IDEA consider refactoring or expanding OOP section :software: