diff options
| -rw-r--r-- | presentation.pdf | bin | 16974836 -> 16552651 bytes | |||
| -rw-r--r-- | presentation.tex | 166 | ||||
| -rw-r--r-- | presentation/chopped.png | bin | 0 -> 168938 bytes | |||
| -rw-r--r-- | presentation/chopped.py | 64 | 
4 files changed, 170 insertions, 60 deletions
| diff --git a/presentation.pdf b/presentation.pdfBinary files differ index 21127c0..af0180f 100644 --- a/presentation.pdf +++ b/presentation.pdf diff --git a/presentation.tex b/presentation.tex index 2ba5308..57a4094 100644 --- a/presentation.tex +++ b/presentation.tex @@ -13,15 +13,11 @@  \begin{frame}{Introduction to CMDS}
    \begin{columns}
      \begin{column}{0.6\textwidth}
 -      \includegraphics[width=\textwidth]{literature/MukamelShaul2009a_1}
 -      \vspace{2\baselineskip} \\
 +      \adjincludegraphics[scale=0.2]{presentation/SK_PhDThesis_fsTable-Overview} \\
        \tiny
 -      Figure: \\
 -      Mukamel, S., Tanimura, Y. and Hamm, P. (2009).
 -      Coherent Multidimensional Optical Spectroscopy.
 -      Accounts of Chemical Research, 42(9), pp.1207-1209.
 -  \end{column}
 -  \begin{column}{0.4\textwidth}
 +      Figure courtesy of Schuyler Kain
 +    \end{column}
 +    \begin{column}{0.4\textwidth}
        \includegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a_1"}
        \centering
        \\
 @@ -36,12 +32,6 @@    \end{columns}
  \end{frame}
 -\begin{frame}{Introduction to CMDS: table layout}
 -  \adjincludegraphics[scale=0.2]{presentation/SK_PhDThesis_fsTable-Overview} \\
 -  \tiny
 -  Figure courtesy of Schuyler Kain
 -\end{frame}
 -
  \begin{frame}{Introduction to CMDS: microscopic picture}
    \adjincludegraphics[width=\textwidth]{"mixed_domain/simulation overview"}
  \end{frame}
 @@ -49,35 +39,49 @@  \begin{frame}{Diversity}
    Great diversity of experimental strategies under the ``umbrella'' of CMDS:
    \vspace{\baselineskip} \\
 -  Experimental geometry...
 -  \begin{itemize}
 -    \item $\vec{k_a} - \vec{k_b} + \vec{k_c}$
 -    \item $\vec{k_a} + \vec{k_b} + \vec{k_c}$
 -    \item $\vec{k_a} - \vec{k_a} + \vec{k_b} + \vec{k_c} + \vec{k_d}$
 -  \end{itemize}
 -  \vspace{\baselineskip}
 -  Dimensions explored...
 -  \begin{itemize}
 -    \item MIR \& visible: DOVE, TRSF
 -    \item fully visible: TREE, CARS
 -    \item frequency-frequency: 2DES/2DIR, ``Resonant-(Raman/IR)''
 -    \item frequency-delay: TG, TA
 -    \item delay-delay: 3PE, MUPPETS
 -  \end{itemize}
 +  \begin{columns}
 +    \begin{column}{0.5\textwidth}
 +      Experimental geometry...
 +      \begin{itemize}
 +        \item $\vec{k_a} - \vec{k_b} + \vec{k_c}$
 +        \item $\vec{k_a} + \vec{k_b} + \vec{k_c}$
 +        \item $\vec{k_a} - \vec{k_a} + \vec{k_b} + \vec{k_c} + \vec{k_d}$
 +      \end{itemize}
 +    \end{column}
 +    \begin{column}{0.5\textwidth}
 +      Dimensions explored...
 +      \begin{itemize}
 +        \item MIR \& visible: DOVE, TRSF
 +        \item fully visible: TREE, CARS
 +        \item frequency-frequency: 2DES/2DIR, ``Resonant-(Raman/IR)''
 +        \item frequency-delay: TG, TA
 +        \item delay-delay: 3PE, MUPPETS
 +      \end{itemize}
 +    \end{column}
 +  \end{columns}
 +  \vphantom{m} \\
    Or 3D.. or 4D: many possibilities not yet popular enough to name  
    % SAY: based on the same basic ability to scan pulses in frequency, delay etc
 +  %   all possible with one instrument
 +  %   each has been focus of entire careers...
  \end{frame}
 -\begin{frame}{Pipeline}
 -  \adjincludegraphics[width=0.5\textwidth]{presentation/pipe}
 -  What does the ``pipeline'' of MR-CMDS data acquisition and processing look like in the Wright
 -  Group?
 -  \vspace{\baselineskip} \\
 -  How to increase data throughput and quality, while decreasing frustration of experimentalists?  %
 -\end{frame}
 -
 -\begin{frame}{MR-CMDS development}
 -  [SUMMARY SLIDE FOR REMAINDER OF PRESENTATION]
 +\begin{frame}{My focus}
 +  Focus on the \emph{pipeline} of CMDS:
 +  \begin{itemize}
 +    \item throughput
 +    \item quality
 +    \item diversity
 +  \end{itemize}
 +  \vphantom{M} \\
 +  Unlock the true potential of these instruments:
 +  \begin{itemize}
 +    \item automated calibration
 +    \item 2D, 3D, 4D...
 +    \item full diversity of possible hardware combinations, rapid development
 +    \item powerful and flexible detection strategies
 +    \item data processing tools
 +  \end{itemize}
  \end{frame}
  \section{Tunability}  % ===========================================================================
 @@ -131,17 +135,17 @@        Crucial for electronic states, band structure.
      \end{column}
    \end{columns}
 +  % SAY:
 +  % - time domain: broadband, interferometric, fast
 +  % - frequency domain: narrowband, direct, slow but broad bandwidth
 +  % - bandwidth crucial for exploring diverse states
  \end{frame}
  \begin{frame}{Bandwidth}
    A lot more bandwidth... through the usage of OPAs
    \adjincludegraphics[width=\textwidth]{opa/OPA_ranges}
 -\end{frame}
 -
 -\begin{frame}{TOPAS-C}
 -  One of four models of OPAs used within the Wright Group.
 -  \includegraphics[width=\textwidth]{opa/TOPAS-C}
 -  Two ``stages'', each with two motorized optics.
 +  \phantom{M} \hfill but how to make this strategy easy and \hl{robust}?
 +  % SAY: previous spectrum was SHS
    % SAY: crystal angle, temporal and spatial overlap
  \end{frame}
 @@ -154,15 +158,16 @@        Fully automated OPA tuning
        \begin{itemize}
          \item less than 1 hour per OPA
 -        \item can be scheduled for odd times
 +        \item can be scheduled during down time
          \item high quality from global analysis 
          \item reproducible
 -        \item unambiguous representations automatically generated
 +        \item unambiguous representations automatically generated to assess health
        \end{itemize}
        \vspace{\baselineskip}
 -      Other calibration steps also automated.
 +      Other calibration also needed, automated.
      \end{column}
    \end{columns}
 +  % SAY: one example for one stage in one model of OPA (out of four in WG)
  \end{frame}
  \section{Acquisition}  % ==========================================================================
 @@ -230,7 +235,7 @@  \section{Measurement enhancements}  % =============================================================
 -\begin{frame}{Artifacts}
 +\begin{frame}{Measurement enhancements}
    \centering \huge
    Measurement enhancements
  \end{frame}
 @@ -247,12 +252,15 @@      \end{column}
    \end{columns}
    \vphantom{M} \\
 -  More flexibility:
    \begin{itemize}
 -    \item shot-level statistics
 -    \item more complex multi-pulse sequences allowed for
 +    \item cheaper, fewer points of failure
 +    \item more flexibility for different detector configurations
 +    \item shot-level statistics, processing sequences
 +    \begin{itemize}
 +      \item configurable through simple python script
 +    \end{itemize}
 +    \item $\sim3\times$ faster
    \end{itemize}
 -  plus... no need to wait for the boxcar averager to settle (speed up of $\sim3\times$)  
  \end{frame}
  \begin{frame}{Dual chopping}
 @@ -272,16 +280,21 @@    \end{columns}
    \centering
    \vphantom{M}
 -  $\mathsf{I_{signal} = A - B + C - D}$
 +  $\mathsf{I_{signal} = A - B + C - D}$ \\
 +  \phantom{M} \\
 +  \raggedright
 +  Isolate signal that depends on \emph{all} indecent beams.
    \begin{itemize}
      \item{no scatter}
 -    \item{no two-beam processes}
 +    \item{no competing signals}  % e.g. 2k1+k3 vs k1+k2+k3
      \item{no voltage offset or room lights}
    \end{itemize}
  \end{frame}
  \begin{frame}{Digital processing}
 -  \adjincludegraphics[height=3in]{MX2/11}
 +  \adjincludegraphics[width=\textwidth]{presentation/chopped}
 +  % SAY: this is a GOOD example
 +  % - we now regularly extract signals that would be completely invisible on the 'detected' side
  \end{frame}
  \section{Processing}  % ===========================================================================
 @@ -312,6 +325,7 @@        \adjincludegraphics[width=\textwidth]{presentation/TOC}
      \end{column}
    \end{columns}
 +  % SAY: multidimensional includes > 2 dimensions
  \end{frame}
  \subsection{Universal format}  % ------------------------------------------------------------------
 @@ -326,6 +340,7 @@    \begin{itemize}
      \item previous Wright Group acquisition software
      \item commercial instruments (JASCO, Shimadzu, Ocean Optics)
 +    \item simulation packages
    \end{itemize}
  \end{frame}
 @@ -334,19 +349,42 @@  \begin{frame}{Flexible data model}
    Flexibility to transform into any desired ``projection'' on component variables.
    \adjincludegraphics[width=\textwidth]{processing/fringes_transform}
 -  % mention: including expressions
 +  % SAY: 'derived dimensionality' - DJM
 +  % - including expressions
  \end{frame}
 -\subsection{Integrations}  % -----------------------------------------------------------------------
 +\subsection{Integrations}  % ----------------------------------------------------------------------
  \begin{frame}{Integrations}
 -  \adjincludegraphics[height=3in]{PbSe_global_analysis/movies_fitted}
 +  \begin{columns}
 +    \begin{column}{0.6\textwidth}
 +      \adjincludegraphics[width=\textwidth]{PbSe_global_analysis/movies_fitted}
 +    \end{column}
 +    \begin{column}{0.4\textwidth}
 +      \begin{itemize}
 +        \item WrightTools as a backend
 +        \item puts models and experiments on the same footing
 +        \item makes custom modeling work easier
 +        \item more general-purpose modeling coming soon
 +      \end{itemize}
 +    \end{column}
 +  \end{columns}
  \end{frame}
  \section{Conclusion}  % ===========================================================================
  \begin{frame}{Conclusion}
 -  [CONCLUSION]
 +  \begin{columns}
 +    \begin{column}{0.5\textwidth}
 +      \adjincludegraphics[height=1.5in]{opa/autotune_preamp}
 +      \adjincludegraphics[width=\textwidth]{acquisition/screenshots/000}
 +    \end{column}
 +    \begin{column}{0.5\textwidth}
 +      \adjincludegraphics[width=\textwidth]{presentation/chopped}
 +      \phantom{M}
 +      \adjincludegraphics[width=\textwidth]{processing/fringes_transform}
 +    \end{column}
 +  \end{columns}
  \end{frame}
  \begin{frame}{Acknowledgments}
 @@ -384,6 +422,8 @@          \item Steve Myers
        \end{itemize}
        \phantom{M}
 +      Friends and family \\
 +      \phantom{M} \\
        You, the audience!
        \hl{Questions?}
      \end{column}
 @@ -392,6 +432,12 @@  \section{Supplement}  % ===========================================================================
 +\begin{frame}{TOPAS-C}
 +  One of four models of OPAs used within the Wright Group.
 +  \includegraphics[width=\textwidth]{opa/TOPAS-C}
 +  Two ``stages'', each with two motorized optics.
 +\end{frame}
 +
  \begin{frame}{Tuning}
    % TODO: curve plot?
    Tuning curves---recorded correspondence between motor positions and output color.
 diff --git a/presentation/chopped.png b/presentation/chopped.pngBinary files differ new file mode 100644 index 0000000..ba3dcfd --- /dev/null +++ b/presentation/chopped.png diff --git a/presentation/chopped.py b/presentation/chopped.py new file mode 100644 index 0000000..7878b99 --- /dev/null +++ b/presentation/chopped.py @@ -0,0 +1,64 @@ +"""Bandwidth comparison between Singh & Czech.""" + + +# --- import -------------------------------------------------------------------------------------- + + +import os + +import numpy as np + +import matplotlib.pyplot as plt +import matplotlib.patches as patches + +import WrightTools as wt +from WrightTools import datasets + + +# --- define -------------------------------------------------------------------------------------- + + +here = os.path.abspath(os.path.dirname(__file__)) + + +# --- workspace ----------------------------------------------------------------------------------- + + +fig, gs = wt.artists.create_figure(width='double', cols=[1, 1, 'cbar']) + +# get data +ps = datasets.COLORS.v2p1_MoS2_TrEE_movie +data = wt.data.from_COLORS(ps) +data.convert('eV', convert_variables=True) +data.ai0.signed = False +data.ai0.clip(min=0, replace='value') +data.level(0, 2, -4) +data = data.chop('w1=wm', 'w2', at={'d2': [-80, 'fs']})[0] + +# decoration +def decorate(ax): +    ax.grid() +    wt.artists.diagonal_line() + +# detector sees +ax = plt.subplot(gs[0, 0]) +ax.pcolor(data, channel='ai4') +ax.set_title('detected', fontsize=20) +decorate(ax) + +# chopped +ax = plt.subplot(gs[0, 1]) +ax.pcolor(data, channel='ai0') +ax.set_title('chopped', fontsize=20) +decorate(ax) + +# label +wt.artists.set_fig_labels(xlabel=data.w1__e__wm.label, ylabel=data.w2.label) + +# colorbar +cax = plt.subplot(gs[0, -1]) +wt.artists.plot_colorbar(cax=cax, label='intensity') + +# save +p = os.path.join(here, 'chopped.png') +wt.artists.savefig(p) | 
