diff options
author | Blaise Thompson <blaise@untzag.com> | 2018-03-22 22:11:26 -0500 |
---|---|---|
committer | Blaise Thompson <blaise@untzag.com> | 2018-03-22 22:11:26 -0500 |
commit | c87c0a95649ed795ae15f343b5a7ce98645e4dc5 (patch) | |
tree | d1332afc1430d5a09da1f979b816a02057a54c40 /processing | |
parent | 84658b0242fbba71d70c16803782c781f95a2554 (diff) |
2018-03-22 22:11
Diffstat (limited to 'processing')
-rw-r--r-- | processing/chapter.tex | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/processing/chapter.tex b/processing/chapter.tex index 3225624..72d1d27 100644 --- a/processing/chapter.tex +++ b/processing/chapter.tex @@ -281,6 +281,51 @@ Also consider using the fit sub-package. % TODO: more info, link to section Chop is one of the most important methods of data, although it is typically not called directly by
users of WrightTools. %
+Chop takes n-dimensional data and ``chops'' it into all of it's lower dimensional components. %
+Consider a 3D dataset in \python{('wm', 'w2', 'w1')}. %
+This dataset can be chopped to it's component 2D \python{('wm', 'w1')} spectra. %
+\begin{codefragment}{python, label=test_label}
+>>> import WrightTools as wt; from WrightTools import datasets
+>>> data = wt.data.from_PyCMDS(datasets.PyCMDS.wm_w2_w1_000)
+data created at /tmp/lzyjg4au.wt5::/
+ axes ('wm', 'w2', 'w1')
+ shape (35, 11, 11)
+>>> chopped = data.chop('wm', 'w1')
+chopped data into 11 piece(s) in ('wm', 'w1')
+>>> chopped.chop000
+<WrightTools.Data 'chop000' ('wm', 'w1') at /tmp/935c2v5a.wt5::/chop000>
+\end{codefragment}
+\python{chopped} is a collection containing 11 data objects: \python{chop000, chop001 ...
+ chop010}. %
+Note that, by default, the collection is made at the root level of a new tempfile. %
+An optional keyword argument \python{parent} allows users to specify the destination for this new
+collection. %
+These lower dimensional data objects can then be used in plotting routines, fitting routines etc. %
+
+By default, chop returns \emph{all} of the lower dimensional slices. %
+Considering the same data object from \autoref{test_label}, we can choose to get all 1D wm
+slices. %
+\begin{codefragment}{python}
+>>> chopped = data.chop('wm')
+chopped data into 121 piece(s) in ('wm',)
+>>> chopped.chop000
+<WrightTools.Data 'chop000' ('wm',) at /tmp/pqkbc0qr.wt5::/chop000>
+\end{codefragment}
+
+If desired, users may use the \python{at} keyword argument to specify a particular coordinate in
+the un-retained dimensions. %
+For example, suppose that you want to plot the data from \ref{test_label} as an wm, w1 plot at
+w2 = 1580 wn. %
+\begin{codefragment}{python}
+>>> chopped = data.chop('wm', 'w1', at={'w2': [1580, 'wn']})[0]
+chopped data into 1 piece(s) in ('wm', 'w1')
+>>> chopped
+<WrightTools.Data 'chop000' ('wm', 'w1') at /tmp/_yhrdprp.wt5::/chop000>
+>>> chopped.w2.points
+array([1580.0])
+\end{codefragment}
+Note the [0]... % TODO
+This same syntax used in artists... % TODO
\subsubsection{Collapse}
|