diff options
author | Blaise Thompson <blaise@untzag.com> | 2018-04-15 00:16:26 -0500 |
---|---|---|
committer | Blaise Thompson <blaise@untzag.com> | 2018-04-15 00:16:26 -0500 |
commit | b75d9d8f2ba798fbbadc975a789cf2615b743328 (patch) | |
tree | 404c03de1aae4dc9f05194dc2d4e6e36203dafe0 | |
parent | 4c38970579d9bd994b18f10ab9fd3956beff4929 (diff) |
2018-04-15 00:16
-rw-r--r-- | OPA_interferometry.wt5 | bin | 0 -> 800 bytes | |||
-rw-r--r-- | PEDOT_PSS/chapter.tex | 1 | ||||
-rw-r--r-- | dissertation.tex | 2 | ||||
-rw-r--r-- | irf/chapter.tex | 7 | ||||
-rw-r--r-- | opa_phase/chapter.tex | 64 | ||||
-rw-r--r-- | opa_phase/darien_playing.py | 3 | ||||
-rw-r--r-- | procedures/chapter.tex | 49 | ||||
-rw-r--r-- | quantitative_ta/chapter.tex | 33 |
8 files changed, 86 insertions, 73 deletions
diff --git a/OPA_interferometry.wt5 b/OPA_interferometry.wt5 Binary files differnew file mode 100644 index 0000000..82daee0 --- /dev/null +++ b/OPA_interferometry.wt5 diff --git a/PEDOT_PSS/chapter.tex b/PEDOT_PSS/chapter.tex index b7fba1f..10a7472 100644 --- a/PEDOT_PSS/chapter.tex +++ b/PEDOT_PSS/chapter.tex @@ -1,6 +1,5 @@ \chapter{PEDOT:PSS} \label{cha:pps} - \textit{This Chapter presents content first published in \textcite{HorakErikH2018a}. The authors are: \begin{denumerate} diff --git a/dissertation.tex b/dissertation.tex index 9c0d90a..9d40288 100644 --- a/dissertation.tex +++ b/dissertation.tex @@ -90,7 +90,7 @@ This dissertation is approved by the following members of the Final Oral Committ \begin{appendix}
% AFTER DEFENSE \include{public/chapter}
\include{procedures/chapter} % prc
-\include{hardware/chapter} % hdw
+% AFTER DEFENSE \include{hardware/chapter} % hdw
\include{irf/chapter} % irf
\include{quantitative_ta/chapter} % qta
\include{opa_phase/chapter} % rpa
diff --git a/irf/chapter.tex b/irf/chapter.tex index 07cd561..3066d9e 100644 --- a/irf/chapter.tex +++ b/irf/chapter.tex @@ -4,7 +4,7 @@ The instrumental response function (IRF) is a classic concept in analytical scie Defining IRF becomes complex with instruments as complex as these, but it is still useful to attempt. % -It is particularly useful to define bandwidth. +It is particularly useful to define bandwidth. % \subsubsection{Time Domain} @@ -63,7 +63,4 @@ A tune test contains this information. % \subsubsection{Time-Bandwidth Product} -For a Gaussian, approximately 0.441 - -% TODO: find reference -% TODO: number defined on INTENSITY level!
\ No newline at end of file +For a Gaussian, approximately 0.441
\ No newline at end of file diff --git a/opa_phase/chapter.tex b/opa_phase/chapter.tex index 774ab45..ae1a9ea 100644 --- a/opa_phase/chapter.tex +++ b/opa_phase/chapter.tex @@ -1,35 +1,53 @@ \chapter{Abandon the random phase approximation} \label{cha:rpa} -Recently we've made some measurements that seem to imply phase stability between the fs OPAs. % -We've typically assumed that the OPAs have random phase on every shot, making coherent heterodyne -processes average to zero. % -These measurements show that this is a very bad assumption. % - -I've taken the interferogram of OPA1 vs OPA2, Clearly the OPAs remain phase locked for many shots. % -In 'over time' I show the spectral phase pattern (D = 500 fs) for 1000 single shot acquisitions -over 430 seconds in lab time. % -The phase does drift, but it is certainly not quickly randomized. % +\clearpage + +Historically, we've assumed that OPAs have random phase on every shot. % +This makes interference processes quickly average to zero over many shots---we rarely take fewer +than 100 shots per pixel. % +Here I demonstrate that this assumption is very poor, at least for the femtosecond OPAs. % + +In these experiments, I simply send OPA1 and OPA2 simultaniously into the array detector. % +The crucial detail is that the beams are exactly collinear---overlaped in a beamsplitter. % +I then scan delay between them while collecting single shot spectra using the array detector. % -I have more data showing: -How the spectral phase changes over the course of hours. -How the phase evolves as we scan the OPAs against each-other in color. -The reproducibility of phase as the OPA motors move away and then return to a given color. +\autoref{rpa:fig:delay} shows the results of these experiments for OPA2 vs itself +(``auto-interference'') and vs OPA1 (``cross interference''). % +At zero delay all colors arise simultaniously, so there are no modulations along the array axis +(vertical). % +As I scan further from zero modulations set in as each wavelength within the pulse has a different +period in delay space. % +It is crucial to remember that the monochromator acts like a stretcher, so we see interference +between the two pulses even when separated by 400 fs. % + +The fringe pattern is expected in the case of auto-interference, but it is also quite stable in +cross-interference. In the next experiment, I explore just how stable the cross-phase is. + +\autoref{rpa:fig:time} shows the same single-shot spectrum taken 1000 times at a fixed delay of 500 +fs. % +The phase does drift, but it is certainly not quickly randomized. % +In fact, the period shifts by 180 degrees in roughly one minute---much much longer than any single +pixel that we have taken. % -I'll work this data up and send out another email with many more details and thoughts once I have -time. % -This quick note is just to let the group know that we must abandon the 'random phase' assumption -when thinking about what heterodyne processes can happen as coherent artifacts. % +This result forces us to reconsider our assumptions when identifying potential sources of artifact +in our measurements. % \begin{figure} - \includegraphics[width=\textwidth]{"opa_phase/cross interference"} - \caption[CAPTION TODO]{ - CAPTION TODO + \includegraphics[width=\textwidth]{"opa_phase/auto_cross_interference"} + \caption[Auto-interference vs cross-interference.]{ + Interference between OPA outputs as function of relative arrival time. + In the left hand plot, OPA2 interferes with itself. + In the right hand plot, OPA1 interferes with OPA2. + Signal is intensity level. } + \label{rpa:fig:delay} \end{figure} \begin{figure} - \includegraphics[width=\textwidth]{"opa_phase/430 seconds"} - \caption[CAPTION TODO]{ - CAPTION TODO + \includegraphics[width=\textwidth]{"opa_phase/time_interference"} + \caption[Cross interference over 100 seconds.]{ + Cross interference at fixed delay of 500 fs. + 1000 single-shot acquisitions over a period of 100 seconds in lab time. } + \label{rpa:fig:time} \end{figure} diff --git a/opa_phase/darien_playing.py b/opa_phase/darien_playing.py index cc8ce39..b8bd5b7 100644 --- a/opa_phase/darien_playing.py +++ b/opa_phase/darien_playing.py @@ -93,8 +93,7 @@ if True: ax.set_xlabel('lab time (s)') ax.set_ylabel(col.auto.wa.label) ax.grid() - - #d.array.clip(.3) + d.array.clip(.3) fig, gs = wt.artists.create_figure(width='double', cols=[1, 'cbar'], default_aspect=.5) # overtime ax = plt.subplot(gs[0,0]) diff --git a/procedures/chapter.tex b/procedures/chapter.tex index fd04bc3..8c8d0b2 100644 --- a/procedures/chapter.tex +++ b/procedures/chapter.tex @@ -1,7 +1,17 @@ \chapter{Procedures} -\clearpage -\section{``Six-month'' maintenance} % ------------------------------------------------------------ +\begin{dquote} + These are the vegetables we must eat before we can have our pixels of ice cream. + + \dsignature{Wright Group saying}. +\end{dquote} + +\vfill + +In this chapter I document the various procedures that I have performed to maintain the MR-CMDS +instruments. % + +\section{``Six-month'' maintenance} % ============================================================ The laser system that the Wright Group's MR-CMDS instruments use requires regular maintenance. % Each component is sensitive to lab conditions such as temperature, humidity, and vibrations. % @@ -13,7 +23,6 @@ Historically, the Wright Group has engaged in reactive maintenance: a ``fix it i don't touch otherwise'' kind of approach. % This approach makes a lot of sense for instruments that are quick to fix, and have few active users. % - I instituted a proactive, regular maintenance procedure (described below) that has improved the predictability of instrumental performance. % Predictability is key for instruments with multiple users. % @@ -48,9 +57,9 @@ Procedure: \end{denumerate} \item Chiller maintenance. \begin{ditemize} - \item See x - \item See y - \item See z + \item See \autoref{prc:sec:lytron} + \item See \autoref{prc:sec:polyscience} + \item See \autoref{prc:sec:neslab} \end{ditemize} \item Lab cleaning. \begin{denumerate} @@ -68,13 +77,9 @@ Procedure: \end{ditemize} \item Let lab sit overnight to allow dust to settle and the air to dehumidify. \item Start up system again. - \begin{denumerate} - \item TODO - \end{denumerate} \end{denumerate} -\clearpage -\section{Lytron Kodiak RC006} % ------------------------------------------------------------------ +\section{Lytron Kodiak RC006} \label{prc:sec:lytron} % =========================================== We have one Lytron Kodiak RC006: Model Number RC006G03BB1C002, Serial Number 739383-02. @@ -107,10 +112,7 @@ These seem to have been fixed by adding a “high” flow loop connecting the ou chiller. % Ideally the pressure drop across this loop is sufficient to still drive fluid through the laser. % -% TODO: figure - -\clearpage -\section{PolyScience 6000 Series} % -------------------------------------------------------------- +\section{PolyScience 6000 Series} \label{prc:sec:polyscience} % ================================== We own two PolyScience chillers---different models but functionally equivalent. @@ -142,8 +144,7 @@ Regular chiller maintenance: \end{denumerate} \end{denumerate} -\clearpage -\section{NesLab Merlin M33} % ==================================================================== +\section{NesLab Merlin M33} \label{prc:sec:neslab} % ============================================= We have one NesLab Merlin M33 Chiller, Serial Number 106227049. % @@ -171,7 +172,6 @@ Regular chiller maintenance % TODO: figures -\clearpage \section{Calibrating the 407A} % ================================================================= Calibrating the 407.A @@ -180,11 +180,11 @@ You may sometimes notice that the zero position changes dramatically from sensit sensitivity with the 407A. If this happens, iterate through the following until zero stays consistent: -Use the fine adjust (knob on side) to zero the 407A on the highest sensitivity - -Use the front adjust (flathead screwdriver needed) to zero on the lowest sensitivity - -\clearpage +\begin{ditemize} + \item Use the fine adjust (knob on side) to zero the 407A on the highest sensitivity. + \item Use the front adjust (flathead screwdriver needed) to zero on the lowest sensitivity. +\end{ditemize} + \section{Millenia} % ============================================================================= \subsection{Startup} % --------------------------------------------------------------------------- @@ -228,7 +228,6 @@ These allow us to record things like Diode hours. % Service mode can be buggy, so it's best to leave the Millenia in normal Power mode during regular operation. % -\clearpage \section{Spitfire Pro} % ========================================================================= Only tune up the Spitfire if you need to, and do not treat it casually---set aside an entire @@ -429,7 +428,6 @@ Since we have not messed with the stretcher frequently this guide cannot be trus square mirrors preceding the compressor. \end{denumerate} -\clearpage \section{TOPAS-C} % ============================================================================== % TODO: figure @@ -668,7 +666,6 @@ Input poynting is adjusted to ensure good alignment through L1 and L2 into D1. \item Measure and record power---should be over 600 mW. \end{denumerate} -\clearpage \section{MicroHR Monochromator} % ================================================================ Visible Grating. % diff --git a/quantitative_ta/chapter.tex b/quantitative_ta/chapter.tex index c8b594d..099b606 100644 --- a/quantitative_ta/chapter.tex +++ b/quantitative_ta/chapter.tex @@ -1,32 +1,35 @@ -\chapter{Quantitative transient absorbance} \label{cha:qta} +\chapter{Quantitative differential absorbance} \label{cha:qta} -\subsubsection{Quantitative TA} +\clearpage Transient absorbance (TA) spectroscopy is a self-heterodyned technique. % Through chopping you can measure nonlinearities quantitatively much easier than with homodyne -detected (or explicitly heterodyned) experiments. +detected (or explicitly heterodyned) experiments. % -\begin{figure} - \includegraphics[width=\textwidth]{"spectroscopy/TA setup"} - \label{fig:ta_and_tr_setup} - \caption{CAPTION TODO} -\end{figure} +%\begin{figure} +% \includegraphics[width=\textwidth]{"spectroscopy/TA setup"} +% \label{fig:ta_and_tr_setup} +% \caption{CAPTION TODO} +%\end{figure} -\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. % -Here I show measurement of both the reflected and transmitted probe beam \dots not important in -opaque (pyrite) or non-reflective (quantum dot) samples \dots % +%\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. % +%Here I show measurement of both the reflected and transmitted probe beam \dots not important in +%opaque (pyrite) or non-reflective (quantum dot) samples \dots % Typically one attempts to calculate the change in absorbance $\Delta A$ \dots % \begin{eqnarray} \Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\ -&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\ -&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\ +&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\ +&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ + I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) + \\ &=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\ -&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete} +&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{qta:eqn:ta_complete} \end{eqnarray} -\autoref{eq:ta_complete} simplifies beautifully if reflectivity is negligible \dots +\autoref{qta:eqn:ta_complete} simplifies beautifully if reflectivity is negligible \dots Now I define a variable for each experimental measurable: \begin{center} |