aboutsummaryrefslogtreecommitdiff
path: root/spectroscopy/chapter.tex
blob: fe10f6075f742d44aa121e998be2e0440a99fc1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
% TODO: discuss and cite CerulloGiulio2003.000
% TODO: discuss and cite BrownEmilyJ1999.000
% TODO: cite and discuss Sheik-Bahae 1990 (first z-scan)
% Modeling of Transient Absorption Spectra in Exciton–Charge-Transfer Systems 10.1021/acs.jpcb.6b09858
% TODO: Multidimensional Spectral Fingerprints of a New Family of Coherent Analytical Spectroscopies
% TODO: https://www.nature.com/articles/nature21425
% TODO: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.4793
% TODO: https://www.nature.com/articles/ncomms2405
% TODO: https://www.nature.com/articles/ncomms2405
% TODO: https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b02693
% TODO: http://journals.sagepub.com/doi/10.1177/0003702816669730

\chapter{Spectroscopy}

\begin{dquote}
  A hundred years ago, Auguste Comte, … a great philosopher, said that humans will never be able to
  visit the stars, that we will never know what stars are made out of, that that's the one thing
  that science will never ever understand, because they're so far away.  %
  And then, just a few years later, scientists took starlight, ran it through a prism, looked at
  the rainbow coming from the starlight, and said: ``Hydrogen!''  %
  Just a few years after this very rational, very reasonable, very scientific prediction was made,
  that we'll never know what stars are made of.  %

  \dsignature{Michio Kaku}
\end{dquote}
  
\clearpage

In this chapter I lay out the foundations of spectroscopy.

\section{Light}

% TODO: add reference to HuygensChristiaan1913.000

% TODO: add reference to MaimanTheodore.000

\section{Light-Matter Interaction}

Spectroscopic experiments all derive from the interaction of light and matter. Many material
properties can be deduced by measuring the nature of this interaction.  %

Nonlinear spectroscopy relies upon higher-order terms in the light-matter interaction. In a generic
system, each term is roughly ten times smaller than the last.  % TODO: cite?

% TODO: Discuss dephasing induced resonance. Example: florescence

\subsection{Representations}

Many strategies have been introduced for diagrammatically representing the interaction of multiple
electric fields in an experiment.  %

\subsubsection{Circle Diagrams}

% TODO: add reference to YeeTK1978.000

% TODO: Discuss circle diagrams from a historical perspective

\subsubsection{Double-sided Feynman Diagrams}

% TODO: Discuss double-sided Feynman diagrams from a historical perspective

\subsubsection{WMEL Diagrams}

So-called wave mixing energy level (\gls{WMEL}) diagrams are the most familiar way of representing
spectroscopy for Wright group members.  %
\gls{WMEL} diagrams were first proposed by Lee and Albrecht in an appendix to their seminal work
\emph{A Unified View of Raman, Resonance Raman, and Fluorescence Spectroscopy}
\cite{LeeDuckhwan1985a}.  %
\gls{WMEL} diagrams are drawn using the following rules.  %
\begin{enumerate}
	\item The energy ladder is represented with horizontal lines - solid for real states and dashed
    for virtual states.
	\item Individual electric field interactions are represented as vertical arrows. The arrows span
    the distance between the initial and final state in the energy ladder.
	\item The time ordering of the interactions is represented by the ordering of arrows, from left
    to right.
	\item Ket-side interactions are represented with solid arrows.
	\item Bra-side interactions are represented with dashed arrows.
	\item Output is represented as a solid wavy line.
\end{enumerate}

\subsubsection{Mukamel Diagrams}

% TODO: Discuss Mukamel diagrams from a historical perspective

\section{Linear Spectroscopy}

\subsection{Reflectivity}

This derivation adapted from \textit{Optical Processes in Semiconductors} by Jacques I. Pankove
\cite{PankoveJacques1975a}.  %
For normal incidence, the reflection coefficient is
\begin{equation}
R = \frac{(n-1)^2+k^2}{(n+1)^2+k^2}
\end{equation}
% TODO: finish derivation

Further derivation adapted from \cite{KumarNardeep2013a}.  %
To extend reflectivity to a differential measurement
% TODO: finish derivation

\section{Coherent Multidimensional Spectroscopy}

% TODO: (maybe) include discussion of photon echo famously discovered in 1979 in Groningen

\gls{multiresonant coherent multidimensional spectroscopy}


\subsection{Three Wave}

\subsection{Four Wave}

Fluorescence

Raman

\subsection{Five Wave}

\subsection{Six Wave}

\gls{multiple population-period transient spectroscopy} (\Gls{MUPPETS})

\section{Strategies for CMDS}

\subsection{Homodyne vs. Heterodyne Detection}

Two kinds of spectroscopies: 1) \gls{heterodyne} 2) \gls{homodyne}.
Heterodyne techniques may be \gls{self heterodyne} or explicitly heterodyned with a local
oscillator.

In all heterodyne spectroscopies, signal goes as $\gls{N}$.  %
In all homodyne spectroscopies, signal goes as $\gls{N}^2$.  %
This literally means that homodyne signals go as the square of heterodyne signals, which is what we
mean when we say that homodyne signals are intensity level and heterodyne signals are amplitude
level.

\Gls{transient absorption}, \gls{TA}

\subsection{Frequency vs. Time Domain}

Time domain techniques become more and more difficult when large frequency bandwidths are
needed.  %
With very short, broad pulses:  %
\begin{itemize}
	\item Non-resonant signal becomes brighter relative to resonant signal
	\item Pulse distortions become important.
\end{itemize}

This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and
shorter pulses \cite{ChengJixin2001a}.  %

An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was
published by \textcite{SpencerAustinP2015a}.  %

Another idea in defense of frequency domain is for the case of power studies.  %
Since time-domain pulses in-fact possess all colors in them they cannot be trusted as much at
perturbative fluence.  %
See that paper that Natalia presented...  %

\subsection{Triply Electronically Enhanced Spectroscopy}

Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM
experiment in the Wright Group.  %

% TODO: On and off-diagonal TrEE pathways

% TODO: Discussion of old and current delay space

\subsection{Transient Absorbance Spectroscopy} 

\Gls{transient absorption} (\gls{TA})

\subsubsection{Quantitative TA}

Transient absorbance (TA) spectroscopy is a self-heterodyned technique.  %
Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
detected (or explicitly heterodyned) experiments.

\begin{figure}
	\includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
	\label{fig:ta_and_tr_setup}
	\caption{CAPTION TODO}
\end{figure}

\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample.  %
Here I show measurement of both the reflected and transmitted probe beam \dots not important in
opaque (pyrite) or non-reflective (quantum dot) samples \dots  %

Typically one attempts to calculate the change in absorbance $\Delta A$ \dots  %

\begin{eqnarray}
\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\
&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\
&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\
&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete}
\end{eqnarray}

\autoref{eq:ta_complete} simplifies beautifully  if reflectivity is negligible \dots

Now I define a variable for each experimental measurable:
\begin{center}
	\begin{tabular}{c | l}
		$V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\
		$V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\
		$V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\
		$V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump
	\end{tabular}
\end{center}

We will need to calibrate using a sample with a known transmisivity and reflectivity constant:
\begin{center}
	\begin{tabular}{c | l}
		$V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\
		$V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\
		$\mathcal{T}_\mathrm{ref}$ & transmissivity \\
		$\mathcal{R}_\mathrm{ref}$ & reflectivity
	\end{tabular}
\end{center}

Define two new proportionality constants...
\begin{eqnarray}
C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\
C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}}
\end{eqnarray}
These are explicitly calibrated (as a function of probe color) prior to the experiment using the
calibration sample.  %

Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$,
$V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$,
$\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in
\autoref{eq:ta_complete} in terms of $I_0$.  %

\begin{eqnarray}
C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\
C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\
I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\
I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\
I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\
I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}}
\end{eqnarray} 

Wonderfully, the $I_0$ cancels when plugged back in to \autoref{eq:ta_complete}, leaving a final
expression for $\Delta A$ that only depends on my eight measurables.  %

\begin{equation}
\Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right)
\end{equation}

\subsection{Cross Polarized TrEE}

\subsection{Pump-TrEE-Probe}

\Gls{pump TrEE probe} (\gls{PTP}).

\section{Instrumental Response Function}

The instrumental response function (IRF) is a classic concept in analytical science.  %
Defining IRF becomes complex with instruments as complex as these, but it is still useful to
attempt.  %

It is particularly useful to define bandwidth.
 
\subsection{Time Domain}

I will use four wave mixing to extract the time-domain pulse-width.   %
I use a driven signal \textit{e.g.} near infrared carbon tetrachloride response.  %
I'll homodyne-detect the output.  %
In my experiment I'm moving pulse 1 against pulses 2 and 3 (which are coincident).  %

The driven polarization, $P$, goes as the product of my input pulse \textit{intensities}:

\begin{equation}
P(T) = I_1(t-T) \times I_2(t) \times I_3(t)
\end{equation}

In our experiment we are convolving $I_1$ with $I_2 \times I_3$.  %
Each pulse has an \textit{intensity-level} width, $\sigma_1$, $\sigma_2$, and $\sigma_3$. $I_2
\times I_3$ is itself a Gaussian, and  
\begin{eqnarray}
\sigma_{I_2I_3} &=& \dots \\
&=& \sqrt{\frac{\sigma_2^2\sigma_3^2}{\sigma_2^2 + \sigma_3^2}}.
\end{eqnarray}

The width of the polarization (across $T$) is therefore

\begin{eqnarray}
\sigma_P &=& \sqrt{\sigma_1^2 + \sigma_{I_2I_3}^2} \\
&=& \dots \\ 
&=& \sqrt{\frac{\sigma_1^2 + \sigma_2^2\sigma_3^2}{\sigma_1^2 + \sigma_2^2}}. \label{eq:generic}
\end{eqnarray}

% TODO: determine effect of intensity-level measurement here

I assume that all of the pulses have the same width.   %
$I_1$, $I_2$, and $I_3$ are identical Gaussian functions with FWHM $\sigma$. In this case,
\autoref{eq:generic} simplifies to  

\begin{eqnarray}
\sigma_P &=& \sqrt{\frac{\sigma^2 + \sigma^2\sigma^2}{\sigma^2 + \sigma^2}} \\
&=& \dots \\
&=& \sigma \sqrt{\frac{3}{2}}
\end{eqnarray}

Finally, since we measure $\sigma_P$ and wish to extract $\sigma$:

\begin{equation}
\sigma = \sigma_P \sqrt{\frac{2}{3}}
\end{equation}

Again, all of these widths are on the \textit{intensity} level.

\subsection{Frequency Domain}

We can directly measure $\sigma$ (the width on the intensity-level) in the frequency domain using a
spectrometer.  %
A tune test contains this information.  %

\subsection{Time-Bandwidth Product}

For a Gaussian, approximately 0.441

% TODO: find reference
% TODO: number defined on INTENSITY level!