diff options
| -rw-r--r-- | literature/BrownEmilyJ1999a.pdf | bin | 0 -> 27493229 bytes | |||
| -rw-r--r-- | literature/BrownEmilyJ1999a_1.png | bin | 0 -> 74019 bytes | |||
| -rw-r--r-- | presentation.pdf | bin | 1331020 -> 5916984 bytes | |||
| -rw-r--r-- | presentation.tex | 331 | 
4 files changed, 186 insertions, 145 deletions
| diff --git a/literature/BrownEmilyJ1999a.pdf b/literature/BrownEmilyJ1999a.pdfBinary files differ new file mode 100644 index 0000000..3b3b524 --- /dev/null +++ b/literature/BrownEmilyJ1999a.pdf diff --git a/literature/BrownEmilyJ1999a_1.png b/literature/BrownEmilyJ1999a_1.pngBinary files differ new file mode 100644 index 0000000..3de5ad3 --- /dev/null +++ b/literature/BrownEmilyJ1999a_1.png diff --git a/presentation.pdf b/presentation.pdfBinary files differ index b840c9f..011e2f0 100644 --- a/presentation.pdf +++ b/presentation.pdf diff --git a/presentation.tex b/presentation.tex index 9f4a3f1..1729bb2 100644 --- a/presentation.tex +++ b/presentation.tex @@ -1,6 +1,7 @@  \documentclass{presentation}
  \title{Development of \\ Frequency Domain Multidimensional Spectroscopy}
 +\subtitle{---Beyond Two Dimensions---}
  \author{Blaise Thompson}
  \institute{University of Wisconsin--Madison}
 @@ -9,141 +10,137 @@  \begin{document}
  \maketitle
 -\section{CMDS}  % =================================================================================
 -
 -\begin{frame}{CMDS}
 -	The Wright Group focuses on the development and usage of \\
 -  Coherent MultiDimensional Spectroscopy (CMDS).
 -  \vspace{\baselineskip} \\
 -  CMDS is a family of related nonlinear spectroscopic experiments.
 -\end{frame}
 -   
 -\begin{frame}{Why CMDS?}
 -  [A BUNCH OF COOL PUBLICATIONS---FOCUSING ON COHERENCE TRANSFER, MECHANISMS ETC]
 -  [MORE APPLICATIONS]
 +\begin{frame}{Brown et al. (1999)}
 +  \begin{columns}
 +    \begin{column}{0.5\textwidth}
 +      \fbox{\adjincludegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a"}}
 +    \end{column}
 +    \begin{column}{0.5\textwidth}
 +      \includegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a_1"}
 +      \centering
 +      \\
 +      \vspace{2\baselineskip}
 +      $\vec{k_{\text{sig}}} = \vec{k_a} - \vec{k_b} + \vec{k_c}$
 +    \end{column}
 +  \end{columns}
  \end{frame}
 -\begin{frame}{Coherence transfer}
 -  \fbox{\adjincludegraphics[width=\textwidth]{literature/ChenuAurelia2014a}}
 +\begin{frame}{Overview}
 +  \adjincludegraphics[width=\textwidth]{"mixed_domain/simulation overview"}
  \end{frame}
 -\begin{frame}{Analytical}
 -  But wait! I'm an \emph{Analytical} Chemist...
 +\begin{frame}{Diversity}
 +  Great diversity of experimental strategies.
    \vspace{\baselineskip} \\
 -  What am I doing in a field so rich with fundamental studies?
 -  \vspace{\baselineskip} \\
 -  I hope to convince you that CMDS can be used for analytical work.  % TODO: better
 +  Different phase matching conditions...
    \begin{itemize}
 -    \item detection (selectivity)
 -    \item unknown identification
 -    \item quantification
 +    \item transient grating $\vec{k_a} - \vec{k_b} + \vec{k_c}$
 +    \item transient absorption
 +    \item DOVE
 +    % TODO: darien's experiments
    \end{itemize}
 +  But also different color combinations and dimensions explored.
 +  % SAY: based on the same basic ability to scan pulses in frequency, delay etc
  \end{frame}
 -% TODO: in fact, 2DIR is already used regularly...
 -
 -\begin{frame}{Pakoulev et al. (2009)}  
 -  \fbox{\adjincludegraphics[width=\textwidth]{literature/PakoulevAndreiV2009a}}
 +\begin{frame}{MR-CMDS development}
 +  [SUMMARY SLIDE FOR REMAINDER OF PRESENTATION]
  \end{frame}
 -\begin{frame}{Pakoulev et al. (2009)}
 -  \begin{shadequote}
 -    Spectroscopy forms the heart of the analytical methodology used for routine chemical
 -    measurement.  %
 -    Of all the analytical spectroscopic methods, NMR spectroscopy is unique in its ability to
 -    \hl{correlate} spin resonances and \hl{resolve} spectral features from spectra containing
 -    \hl{thousands of peaks}.  %
 -    For example, heteronuclear multiple quantum coherence (HMQC) spectroscopy achieves this
 -    capability by exciting $^1$H, $^{15}$N, $^{13}$ C=O, and $^{13}$C$\alpha$ spins to form a
 -    multiple quantum coherence \hl{characteristic of a specific position} in a protein’s backbone.
 -    Three excitations define a specific residue, and a fourth defines the coupling to an adjacent
 -    residue.
 -    Not only does it decongest the spectra, it defines the couplings and connectivity between the
 -    different nuclear spin states.
 -    Coherent multidimensional spectroscopy (CMDS) has emerged as the \hl{optical analogue} of
 -    nuclear magnetic resonance (NMR), and there is great interest in using it as a \hl{general
 -      analytical methodology}.
 -  \end{shadequote}
 -\end{frame}
 +\section{Tunability}  % ===========================================================================
 -\begin{frame}{Donaldson et al. (2010)}
 -  \fbox{\adjincludegraphics[width=\textwidth]{literature/DonaldsonPaulMurray2010a}}
 +\begin{frame}{Tunability}
 +  \centering \huge
 +  Control and Calibration of \\
 +  Optical Parametric Amplifiers
  \end{frame}
 -\begin{frame}{Fournier et al. (2009)}
 -  \fbox{\adjincludegraphics[width=\textwidth]{literature/FournierFrederic2009a}}
 +\begin{frame}{Two strategies for CMDS}
 +  Two strategies for collecting multidimensional spectra:
 +  \vspace{\baselineskip} \\
 +  \begin{columns}
 +    \begin{column}{0.4\textwidth}
 +      Time Domain
 +      \begin{itemize}
 +        \item broadband pulses
 +        \item resolve spectra interferometrically
 +        \item fast (even single shot)
 +        \item robust
 +      \end{itemize} 
 +    \end{column}
 +    \begin{column}{0.4\textwidth}
 +      Frequency Domain
 +      \begin{itemize}
 +        \item narrowband pulses
 +        \item resolve spectra by tuning OPAs directly
 +        \item slow (lots of motor motion)
 +        \item fragile
 +      \end{itemize}
 +    \end{column}
 +  \end{columns}
 +\end{frame}
 +
 +\begin{frame}{Postage stamp}
 +  [FIGURE FROM LIT]
 +\end{frame}
 +
 +\begin{frame}{Czech}
 +  [FIGURE FROM CZECH]
  \end{frame}
 -\begin{frame}{Fournier et al. (2009)}
 -  \begin{shadequote}
 -    Our protein identification strategy is based on using EVV 2DIR to quantify the amino acid
 -    content of a protein.  %
 -    EVV 2DIR is shown to be able to perform \hl{absolute quantification}, something of major
 -    importance in the field of proteomics but rather difficult and time-consuming to achieve with
 -    mass spectrometry.  %
 -    Our technique can be qualified as a top-down \hl{label-free} method; it does not require
 -    intensive sample preparation, the proteins are intact when analyzed, and it does not have any
 -    mass restriction on the proteins to be analyzed.  %
 -    Moreover, EVV 2DIR is a \hl{nondestructive} technique; the samples can be kept for reanalysis
 -    in the light of further information.  %
 -  \end{shadequote}
 +\begin{frame}{Bandwidth}
 +  \adjincludegraphics[width=\textwidth]{opa/OPA_ranges}
  \end{frame}
 -\section{Frequency domain}  % =====================================================================
 -
 -\begin{frame}{Domains of CMDS}
 -  CMDS can be collected in two domains:
 -  \begin{itemize}
 -    \item time domain
 -    \item frequency domain
 -  \end{itemize}
 +\begin{frame}{TOPAS-C}
 +  \includegraphics[width=\textwidth]{opa/TOPAS-C}
 +  Two ``stages'', each with two motorized optics.
  \end{frame}
 -\begin{frame}{Time domain}
 -  Multiple broadband pulses are scanned in \emph{time} to collect a multidimensional interferogram
 -  (analogous to FTIR, NMR).
 +\begin{frame}{Tuning}
 +  % TODO: curve plot?
 +  Tuning curves---recorded correspondence between motor positions and output color.
    \vspace{\baselineskip} \\
 -  A local oscillator must be used to measure the \emph{phase} of the output.
 +  Exquisite sensitivity to alignment and lab conditions---tuning required roughly once a week.
    \vspace{\baselineskip} \\
 -  This technique is...
 +  Manual tuning is difficult...
    \begin{itemize}
 -    \item fast (even single shot)
 -    \item robust
 +    \item high dimensional motor space
 +    \item difficult to asses overall quality
 +    \item several hours of work per OPA (sometimes, an entire day for one OPA)
    \end{itemize}
 -  pulse shapers have made time-domain CMDS (2DIR) almost routine.
  \end{frame}
 -\begin{frame}{Frequency domain}
 -  In the Wright Group, we focus on \emph{frequency} domain ``Multi-Resonant'' (MR)-CMDS.
 -  \vspace{\baselineskip} \\
 -  Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses.
 -  Multidimensional spectra are collected ``directly'' by scanning OPAs against each-other.
 -  \vspace{\baselineskip} \\
 -  This strategy is...
 -  \begin{itemize}
 -    \item slow (must directly visit each pixel)
 -    \item fragile (many crucial moving pieces)
 -  \end{itemize}
 -  but! It is incredibly flexible.  
 +\begin{frame}{Preamp}
 +  \includegraphics[width=\textwidth]{opa/preamp}
  \end{frame}
 -\begin{frame}{Bandwidth}
 -  MR-CMDS has no bandwidth limit!
 -  \vspace{\baselineskip} \\
 -  There is just the small matter of making the source continuously tunable...
 -  \adjincludegraphics[width=\textwidth]{opa/OPA_ranges}
 +\begin{frame}{Automation}
 +  \begin{columns}
 +    \begin{column}{0.5\textwidth}
 +      \adjincludegraphics[width=\textwidth]{opa/autotune_preamp}
 +    \end{column}
 +    \begin{column}{0.5\textwidth}
 +      Fully automated OPA tuning
 +      \begin{itemize}
 +        \item less than 1 hour per OPA
 +        \item can be scheduled for odd times
 +        \item high quality from global analysis 
 +        \item reproducible
 +        \item unambiguous representations
 +      \end{itemize}
 +      \vspace{\baselineskip} \\
 +      Other calibration steps also automated.
 +    \end{column}
 +  \end{columns}
  \end{frame}
 -\begin{frame}{Selection rules}
 -  MR-CMDS can easily collect data without an external local oscillator.
 -  \vspace{\baselineskip} \\
 -  This means... [BOYLE]
 -\end{frame}
 -
 -\section{The instrument}  % =======================================================================
 +\section{Acquisition}  % ==========================================================================
 -\begin{frame}{The instrument}
 -  [PICTURE OF LASER LAB]
 +\begin{frame}{Acquisition}
 +  \centering \huge
 +  Control of the MR-CMDS \\
 +  Instrument
  \end{frame}
  \begin{frame}{The instrument}
 @@ -166,33 +163,6 @@    How to increase data throughput and quality, while decreasing frustration of experimentalists?  %
  \end{frame}
 -\section{Processing}  % ===========================================================================
 -
 -\begin{frame}{Processing}
 -  WrightTools.
 -\end{frame}
 -
 -\begin{frame}{Universal format}
 -  WrightTools defines a \emph{universal file format} for CMDS.
 -  \begin{itemize}
 -    \item store multiple multidimensional arrays
 -    \item metadata
 -  \end{itemize}
 -  Import data from a variety of sources.
 -  \begin{itemize}
 -    \item previous Wright Group acquisition software
 -    \item commercial instruments (JASCO, Shimadzu, Ocean Optics)
 -  \end{itemize}
 -\end{frame}
 -
 -\begin{frame}{Flexible data model}
 -  Flexibility to transform into any desired ``projection'' on component variables.
 -  \adjincludegraphics[width=\textwidth]{processing/fringes_transform}
 -  % mention: including expressions
 -\end{frame}
 -
 -\section{Acquisition}  % ==========================================================================
 -
  \begin{frame}{Acquisition}
    PyCMDS---unified software for controlling hardware and collecting data.
    \adjincludegraphics[width=\textwidth]{acquisition/screenshots/000}
 @@ -203,18 +173,6 @@    \vspace{\baselineskip} \\
    Sensor---something that has a \hl{signal} that can be \hl{read}.
  \end{frame}
 -  
 -\begin{frame}{Modular hardware model}
 -  \adjincludegraphics[scale=0.25]{acquisition/hardware_inheritance}
 -\end{frame}
 -
 -\begin{frame}{Modular sensor model}
 -  Can have as many sensors as needed.
 -  \vspace{\baselineskip} \\
 -  Each sensor contributes one or more channels.
 -  \vspace{\baselineskip} \\
 -  Sensors with size contribute new variables (dimensions).
 -\end{frame}
  \begin{frame}{Central loop}
    Set, wait, read, wait, repeat.
 @@ -241,9 +199,25 @@    \end{itemize}
  \end{frame}
 -\section{Tuning}  % ===============================================================================
 +\subsection{Extensibility}  % ---------------------------------------------------------------------
 -\begin{frame}{Tuning}
 +% DARIEN ADDED AEROTECH STAGE---1 DAY
 +
 +% SUNDEN ADDED CUSTOM POYNTING TUNE IN A FEW DAYS (including testing)
 +
 +\section{Processing}  % ===========================================================================
 +
 +\begin{frame}{Processing}
 +  WrightTools.
 +\end{frame}
 +
 +\begin{frame}{TOC}
 +\end{frame}
 +
 +\begin{frame}{Flexible data model}
 +  Flexibility to transform into any desired ``projection'' on component variables.
 +  \adjincludegraphics[width=\textwidth]{processing/fringes_transform}
 +  % mention: including expressions
  \end{frame}
  \section{Conclusion}  % ===========================================================================
 @@ -252,6 +226,73 @@  \end{frame}
  \section{Supplement}  % ===========================================================================
 + 
 +\begin{frame}{Modular hardware model}
 +  \adjincludegraphics[scale=0.25]{acquisition/hardware_inheritance}
 +\end{frame}
 +
 +\begin{frame}{Modular sensor model}
 +  Can have as many sensors as needed.
 +  \vspace{\baselineskip} \\
 +  Each sensor contributes one or more channels.
 +  \vspace{\baselineskip} \\
 +  Sensors with size contribute new variables (dimensions).
 +\end{frame}
 +
 +\begin{frame}{Universal format}
 +  WrightTools defines a \emph{universal file format} for CMDS.
 +  \begin{itemize}
 +    \item store multiple multidimensional arrays
 +    \item metadata
 +  \end{itemize}
 +  Import data from a variety of sources.
 +  \begin{itemize}
 +    \item previous Wright Group acquisition software
 +    \item commercial instruments (JASCO, Shimadzu, Ocean Optics)
 +  \end{itemize}
 +\end{frame}
 +
 +\begin{frame}{Domains of CMDS}
 +  CMDS can be collected in two domains:
 +  \begin{itemize}
 +    \item time domain
 +    \item frequency domain
 +  \end{itemize}
 +\end{frame}
 +
 +\begin{frame}{Time domain}
 +  Multiple broadband pulses are scanned in \emph{time} to collect a multidimensional interferogram
 +  (analogous to FTIR, NMR).
 +  \vspace{\baselineskip} \\
 +  A local oscillator must be used to measure the \emph{phase} of the output.
 +  \vspace{\baselineskip} \\
 +  This technique is...
 +  \begin{itemize}
 +    \item fast (even single shot)
 +    \item robust
 +  \end{itemize}
 +  pulse shapers have made time-domain CMDS (2DIR) almost routine.
 +\end{frame}
 +
 +\begin{frame}{Frequency domain}
 +  In the Wright Group, we focus on \emph{frequency} domain ``Multi-Resonant'' (MR)-CMDS.
 +  \vspace{\baselineskip} \\
 +  Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses.
 +  Multidimensional spectra are collected ``directly'' by scanning OPAs against each-other.
 +  \vspace{\baselineskip} \\
 +  This strategy is...
 +  \begin{itemize}
 +    \item slow (must directly visit each pixel)
 +    \item fragile (many crucial moving pieces)
 +  \end{itemize}
 +  but! It is incredibly flexible.  
 +\end{frame}
 +
 +\begin{frame}{Selection rules}
 +  MR-CMDS can easily collect data without an external local oscillator.
 +  \vspace{\baselineskip} \\
 +  This means... [BOYLE]
 +\end{frame}
  \begin{frame}{MR-CMDS theory}
  \end{frame}
 | 
