aboutsummaryrefslogtreecommitdiff
path: root/active_correction
diff options
context:
space:
mode:
authorBlaise Thompson <blaise@untzag.com>2018-03-24 16:45:13 -0500
committerBlaise Thompson <blaise@untzag.com>2018-03-24 16:45:13 -0500
commit46eb6bad8700abdfef52fd83445607228016b10b (patch)
tree824753b489dc24aeb09444a89d08d82fec43de3f /active_correction
parent7d602505a8b84d6c3743dd3cc0c9ac0a421f07b2 (diff)
2018-03-24 16:45
Diffstat (limited to 'active_correction')
-rw-r--r--active_correction/chapter.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/active_correction/chapter.tex b/active_correction/chapter.tex
index 6d429a0..fbbc26c 100644
--- a/active_correction/chapter.tex
+++ b/active_correction/chapter.tex
@@ -56,7 +56,7 @@ parameterization of delay space chosen. %
First I focus on the interference patterns in 2D delay space where all excitation fields and the
detection field are at the same frequency. %
-\begin{dfigure}
+\begin{figure}
\includegraphics[scale=0.5]{"active_correction/scatter/scatter interference in TrEE old"}
\caption[Simulated interference paterns in old delay parameterization.]{Numerically simulated
interference patterns between scatter and TrEE for the old delay parametrization. Each column
@@ -64,7 +64,7 @@ detection field are at the same frequency. %
bottom row shows the 2D Fourier transform, with the colorbar's dynamic range chosen to show the
cross peaks.}
label{fig:scatterinterferenceinTrEEold}
-\end{dfigure}
+\end{figure}
Here I derive the slopes of constant phase for the old delay space, where
$\mathrm{d1}=\tau_{2^\prime1}$ and $\mathrm{d2}=\tau_{21}$. %
@@ -89,7 +89,7 @@ The cross term between scatter and signal is the product of $\Phi_\mathrm{sig}$
Figure \ref{fig:scatterinterferenceinTrEEold} presents numerical simulations of scatter interference as a visual aid. See Yurs 2011 \cite{YursLenaA2011a}.
% TODO: Yurs 2011 Data
-\begin{dfigure}
+\begin{figure}
\includegraphics[width=7in]{"active_correction/scatter/scatter interference in TrEE current"}
\caption[Simulated interference paterns in current delay parameterization.]{Numerically simulated
interference patterns between scatter and TrEE for the current delay parametrization. Each
@@ -97,7 +97,7 @@ Figure \ref{fig:scatterinterferenceinTrEEold} presents numerical simulations of
the bottom row shows the 2D Fourier transform, with the colorbar's dynamic range chosen to show
the cross peaks.}
\label{fig:scatterinterferenceinTrEEcurrent}
-\end{dfigure}
+\end{figure}
Here I derive the slopes of constant phase for the current delay space, where $\mathrm{d1}=\tau_{22^\prime}$ and $\mathrm{d2}=\tau_{21}$. I take $\tau_2$ to be $0$, so that $\tau_{22^\prime}\rightarrow\tau_{2^\prime}$ and $\tau_{21}\rightarrow\tau_1$. The phase of the signal is then
\begin{equation}
@@ -181,7 +181,7 @@ this technique was used prior to May 2016 in the Wright Group... %
`leveling' and single-chopping is also used in some early 2DES work...
\cite{BrixnerTobias2004a}. %
-\begin{dfigure}
+\begin{figure}
\includegraphics[scale=0.5]{"active_correction/scatter/TA chopping comparison"}
\caption[Comparison of single, dual chopping.]{Comparison of single and dual chopping in a
MoS\textsubscript{2} transient absorption experiment. Note that this data has not been
@@ -189,7 +189,7 @@ this technique was used prior to May 2016 in the Wright Group... %
grey line near 2 eV represents the pump energy. The inset labels are the number of laser shots
taken and the chopping strategy used.}
\label{fig:ta-chopping-comparison}
-\end{dfigure}
+\end{figure}
Figure \ref{fig:ta-chopping-comparison} shows the effects of dual chopping for some representative
MoS\textsubscript{2} TA data. %