\documentclass{presentation} \title{Development of \\ Frequency-Domain Multidimensional Spectroscopy} \subtitle{---Beyond Two Dimensions---} \author{Blaise Thompson} \institute{University of Wisconsin--Madison} \date{2018-04-23} \begin{document} \maketitle \begin{frame}{Introduction to CMDS} \begin{columns} \begin{column}{0.6\textwidth} \includegraphics[width=\textwidth]{presentation/SK_PhDThesis_fsTable-Overview} \end{column} \begin{column}{0.4\textwidth} \includegraphics[width=\textwidth]{"literature/BrownEmilyJ1999a_1"} \centering \\ \vspace{2\baselineskip} $\vec{k_{\text{sig}}} = \vec{k_a} - \vec{k_b} + \vec{k_c}$ \vspace{2\baselineskip} \\ \tiny \raggedright Figure: \\ Brown, E., Zhang, Q. and Dantus, M. (1999). \\ The Journal of Chemical Physics, 110(12), pp.5772-5788. \end{column} \end{columns} \end{frame} \begin{frame}{Introduction to CMDS} \adjincludegraphics[width=\textwidth]{"mixed_domain/simulation overview"} \end{frame} \begin{frame}{Diversity} Great diversity of experimental strategies. \vspace{\baselineskip} \\ Different phase matching conditions... \begin{itemize} \item transient grating $\vec{k_a} - \vec{k_b} + \vec{k_c}$ \item transient absorption \item DOVE % TODO: darien's experiments \end{itemize} But also different color combinations and dimensions explored. % SAY: based on the same basic ability to scan pulses in frequency, delay etc \end{frame} \begin{frame}{Pipeline} \adjincludegraphics[width=0.5\textwidth]{presentation/pipe} What does the ``pipeline'' of MR-CMDS data acquisition and processing look like in the Wright Group? \vspace{\baselineskip} \\ How to increase data throughput and quality, while decreasing frustration of experimentalists? % \end{frame} \begin{frame}{MR-CMDS development} [SUMMARY SLIDE FOR REMAINDER OF PRESENTATION] \end{frame} \section{Tunability} % =========================================================================== \begin{frame}{Tunability} \centering \huge Control and Calibration of \\ Optical Parametric Amplifiers \end{frame} \begin{frame}{Two strategies for CMDS} Two strategies for collecting multidimensional spectra: \vspace{\baselineskip} \\ \begin{columns} \begin{column}{0.4\textwidth} Time Domain \begin{itemize} \item broadband pulses \item resolve spectra interferometrically \item fast (even single shot) \item robust \end{itemize} \end{column} \begin{column}{0.4\textwidth} Frequency Domain \begin{itemize} \item narrowband pulses \item resolve spectra by tuning OPAs directly \item slow (lots of motor motion) \item fragile \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Two strategies for CMDS} \begin{columns} \begin{column}{0.5\textwidth} Time Domain \includegraphics[width=\textwidth]{"literature/SinghAkshay2014a_2"} \tiny Figure: \\ Singh, A., Moody, G., Wu, S., Wu, Y., Ghimire, N., Yan, J., Mandrus, D., Xu, X. and Li, X. (2014). Coherent Electronic Coupling in Atomically Thin MoSe$_2$. Physical Review Letters, 112(21). \end{column} \begin{column}{0.5\textwidth} Frequency Domain \adjincludegraphics[width=\textwidth]{presentation/singh_czech} More \hl{bandwidth}. Crucial for electronic states, band structure. \end{column} \end{columns} \end{frame} \begin{frame}{Bandwidth} A lot more bandwidth... through the usage of OPAs \adjincludegraphics[width=\textwidth]{opa/OPA_ranges} \end{frame} \begin{frame}{TOPAS-C} \includegraphics[width=\textwidth]{opa/TOPAS-C} Two ``stages'', each with two motorized optics. \end{frame} \begin{frame}{Automation} \begin{columns} \begin{column}{0.5\textwidth} \adjincludegraphics[width=\textwidth]{opa/autotune_preamp} \end{column} \begin{column}{0.5\textwidth} Fully automated OPA tuning \begin{itemize} \item less than 1 hour per OPA \item can be scheduled for odd times \item high quality from global analysis \item reproducible \item unambiguous representations automatically generated \end{itemize} \vspace{\baselineskip} Other calibration steps also automated. \end{column} \end{columns} \end{frame} \section{Acquisition} % ========================================================================== \begin{frame}{Acquisition} \centering \huge Control of the MR-CMDS \\ Instrument \end{frame} \begin{frame}{The instrument} Many kinds of component hardware \begin{itemize} \item monochromators \item delay stages \item filters \item OPAs \end{itemize} $\sim10$ settable devices, $\sim25$ motors, multiple detectors. \end{frame} \begin{frame}{Acquisition} PyCMDS---unified software for controlling hardware and collecting data. \adjincludegraphics[width=\textwidth]{acquisition/screenshots/000} \end{frame} \begin{frame}{Central loop} At its core, PyCMDS does something very simple... \vspace{\baselineskip} \\ Set, wait, read, wait, repeat. % TODO: better figure \vspace{\baselineskip} \\ Everything is multi-threaded (simultaneous motion, simultaneous read). \begin{itemize} \item decrease scan time by up to $\sim2\times$, more for complex experiments \end{itemize} \end{frame} \subsection{Extensibility} % --------------------------------------------------------------------- \begin{frame}{Extensibility} \begin{columns} \begin{column}{0.25\textwidth} \adjincludegraphics[width=\textwidth]{presentation/hardware} \end{column} \begin{column}{0.75\textwidth} A modular hardware system that can be easily added to \begin{itemize} \item When a new OPA was installed on the picosecond system, PyCMDS was back in action the next day. \item Darien inherited a new delay stage from the Crim Group, and added it to PyCMDS in less than two days. \item New \emph{kinds} of hardware also possible to add, although this is more difficult. \end{itemize} just need to copy a script and modify... % PoyntinTune \vfill \end{column} \end{columns} \end{frame} \subsection{Queue} % ----------------------------------------------------------------------------- % TODO: consider cropping, making into one slide \begin{frame}{Queue} \adjincludegraphics[width=\textwidth]{acquisition/screenshots/004} \end{frame} \begin{frame}{Queue} This strategy can be incredibly productive! \begin{itemize} \item Soon after the queue was first implemented, we collected more pixels in two weeks than had been collected over the previous three years. \end{itemize} \end{frame} \section{Artifacts} % ============================================================================ \begin{frame}{Acquisition} \centering \huge Artifact Rejection \end{frame} \begin{frame}{Shots Processing} [DIGITAL SHOTS PROCESSING---NO MORE BOXCARS] \end{frame} \section{Processing} % =========================================================================== \begin{frame}{Processing} \centering \huge Data Processing \end{frame} \begin{frame}{Dimensionality} \begin{columns} \begin{column}{0.4\textwidth} \adjincludegraphics[width=\textwidth]{presentation/TOC} \end{column} \begin{column}{0.6\textwidth} TEST \end{column} \end{columns} \end{frame} \begin{frame}{Flexible data model} Flexibility to transform into any desired ``projection'' on component variables. \adjincludegraphics[width=\textwidth]{processing/fringes_transform} % mention: including expressions \end{frame} \begin{frame}{Universal format} WrightTools defines a \emph{universal file format} for CMDS. \begin{itemize} \item store multiple multidimensional arrays \item metadata \end{itemize} Import data from a variety of sources. \begin{itemize} \item previous Wright Group acquisition software \item commercial instruments (JASCO, Shimadzu, Ocean Optics) \end{itemize} \end{frame} \section{Conclusion} % =========================================================================== \begin{frame}{Conclusion} [CONCLUSION] \end{frame} \begin{frame}{Acknowledgments} \begin{columns} \begin{column}{0.5\textwidth} Wright Group \begin{itemize} \item Kyle Sunden \item Natalia Spitha \item Darien Morrow \item Jonathan Handali \item Nathan Neff-Mallon \item Kyle Czech \item Dan Kohler \item Erin Boyle \item Paul Hebert \item Skye Kain \item John \item (and more...) \end{itemize} \end{column} \begin{column}{0.5\textwidth} Committee \begin{itemize} \item Kyoung-Shin Choi \item Randall Goldsmith \item Tim Bertram \end{itemize} \vspace{\baselineskip} UW-Madison Chemistry Department \begin{itemize} \item Rob McClain \item Pam Doolittle \item Bill Goebel \item Steve Myers \end{itemize} \vspace{\baselineskip} You, the audience! \hl{Questions?} \end{column} \end{columns} \end{frame} \section{Supplement} % =========================================================================== \begin{frame}{Tuning} % TODO: curve plot? Tuning curves---recorded correspondence between motor positions and output color. \vspace{\baselineskip} \\ Exquisite sensitivity to alignment and lab conditions---tuning required roughly once a week. \vspace{\baselineskip} \\ Manual tuning is difficult... \begin{itemize} \item high dimensional motor space \item difficult to asses overall quality \item several hours of work per OPA (sometimes, an entire day for one OPA) \end{itemize} \end{frame} \begin{frame}{Preamp} \includegraphics[width=\textwidth]{opa/preamp} \end{frame} \begin{frame}{Modular hardware model} \adjincludegraphics[scale=0.25]{acquisition/hardware_inheritance} \end{frame} \begin{frame}{Modular sensor model} Can have as many sensors as needed. \vspace{\baselineskip} \\ Each sensor contributes one or more channels. \vspace{\baselineskip} \\ Sensors with size contribute new variables (dimensions). \end{frame} \begin{frame}{Domains of CMDS} CMDS can be collected in two domains: \begin{itemize} \item time domain \item frequency domain \end{itemize} \end{frame} \begin{frame}{Time domain} Multiple broadband pulses are scanned in \emph{time} to collect a multidimensional interferogram (analogous to FTIR, NMR). \vspace{\baselineskip} \\ A local oscillator must be used to measure the \emph{phase} of the output. \vspace{\baselineskip} \\ This technique is... \begin{itemize} \item fast (even single shot) \item robust \end{itemize} pulse shapers have made time-domain CMDS (2DIR) almost routine. \end{frame} \begin{frame}{Frequency domain} In the Wright Group, we focus on \emph{frequency} domain ``Multi-Resonant'' (MR)-CMDS. \vspace{\baselineskip} \\ Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses. Multidimensional spectra are collected ``directly'' by scanning OPAs against each-other. \vspace{\baselineskip} \\ This strategy is... \begin{itemize} \item slow (must directly visit each pixel) \item fragile (many crucial moving pieces) \end{itemize} but! It is incredibly flexible. \end{frame} \begin{frame}{Selection rules} MR-CMDS can easily collect data without an external local oscillator. \vspace{\baselineskip} \\ This means... [BOYLE] \end{frame} \begin{frame}{MR-CMDS theory} \end{frame} \begin{frame}{Mixed domain} [FIGURES FROM DAN'S PAPER] \end{frame} \end{document}