Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition

Processing

Conclusion

Supplement

Development of Frequency Domain Multidimensional Spectroscopy –Beyond Two Dimensions–

Blaise Thompson

University of Wisconsin-Madison

2018-04-23

Development of Frequency Domain Multidimensional Spectroscopy

Blaise Thompson

Tunability

Acquisition

Extensibility

Processing

Conclusion

Supplement

JOURNAL OF CHEMICAL PHYSICS

VOLUME 110, NUMBER 12

22 MARCH 1999

Femtosecond transient-grating techniques: Population and coherence dynamics involving ground and excited states

Emily J. Brown, Qingguo Zhang,⁴¹ and Marcos Dantus¹⁶ Department of Chemistry and Center for Fundamental Materials Research. Michigan State University, East Lauring, Michigan 4824-1132

(Received 11 May 1998; accepted 23 December 1998)

Time-resolved transient grating techniques (TG) arising from four-wave mixing (EWM) processes are explored for the study of molecular dynamics in eas-phase systems ranging from single stoms to large polyatomic molecules. For atomic species such as Ar and Xe, each TG signal shows only a peak at zero time delay when all three incident pulses are overlapped temporally. For diatomic Oand N. and linear tristomic CS, molecular the TG sizeak exhibit around state rotational wave nacket recurrences that can be analyzed to obtain accurate rotational constants for these molecules. With heavier systems such as HeL, ground state vibrational and rotational wave nacket dynamics are observed. Resonant excitation allows us to select between measurements that monitor wave packet dynamics, i.e., populations in the ground or excited states or coherences between the two electronic states. To illustrate these two cases we chose the $X \rightarrow B$ transition in L. TG measurements vield dynamic information characteristic of vibrational and rotational wave packets from the ground and excited states. Reverse transient grating (RTG) experiments monitor the time evolution of an electronic coherence between the ground and excited states which includes vibrational and rotational information as well. Early time TG signal for the polyatomic samples CH-CL, CH-Brbenzene, and toluene exhibit a coherence coupling feature at time zero followed by rotational dephasing. Differences in the amplitude of these two components are related to the contributions from the isotropic and anisotropic components of the molecular polarizability. A theoretical formalism is developed and used successfully to interpret and simulate the experimental transients The measurements in this study provide eas-phase rotational and vibrational dephasing information that is contrasted, in the case of CS₂, with liquid phase measurements. This comparison provides a time scale for intramolecular dynamics, intermolecular collisions, and solvation dynamics. © 1999 American Institute of Physics. [S0021-9606(99)02012-7]

I. INTRODUCTION

The past decade has witnessed rapid growth of real-time molecular dynamics investigation using ultrashort laser pulses.1-4 Various probing techniques have been exploited in this endeavor. Particularly, third- or higher-order nonlinear techniques have been employed increasingly in recent years for studying molecular dynamics in the gas-phase environment. Techniques similar to coherent transient birefringence. in yappr samples, pionaerad by Heritaga et al. in the picosecond regime.5 were recognized by Faver and co-workers for their potential for probing gas, phase dynamics 6-8 Ex. amples of such novel techniques extended to the femtosecond time scale include degenerate four-wave mixing (DFWM)9,10 and coherent anti-Stokes Raman scattering (CARS).^{11,12} In this study, we examine the different types of dynamics that can be observed by time-resolved transienterating (TG) techniques involving four-wave mixing (FWM) nonlinear optical processes. The name "'transient grating" is used here to highlight the fact that most of the information obtained in these experiments derives from the time-ordering of various ultrashter pelses and not from high-resolution frequency tuning. We explore the TG signals from a series of atomic, diatomic, and polyatomic systems. A theoretical framework is included that takes into account the different third-order nonlinear processes that contribute to the doserved signals. From this analysis formulae are derived to analyze the vibrational and reational dynamics observed in the experimental atransients for both resonant and offresonant excitation.

Most starfast experiments on molecular dynamics in the gap shase have been carried out stuig the pump-probe technique³. In these experiments, a pump laser initiates the important of the pump starfast experiments of the pump laser in process. In a few studies, ³¹¹⁰ for the pump laser base is the pump laser has been utilized to access higher shing distant or values and the studies and the pump laser has been utilized to access higher shing distances and multipletons accutation followed by phoneconversion and multipletons accutation followed by phoneing start and the studies of the start of the start accutation of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the start of the start of the start of the start in the start of the star

⁶Carrent address: George R. Harrison Spectroscopy Laboratory, Massachusens Institute of Technology, Cambridge, Massachusens 02139.
⁸⁰Autor to where correspondence should be addressed. Electronic mail adtempt for the second second

Overview

Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition Extensibility Processing Conclusion

Blaise Thompson

Multidimensional

Tunability Acquisition Extensibility

Processing

Conclusion

Supplement

Great diversity of experimental strategies.

Different phase matching conditions...

- transient grating $\vec{k_a} \vec{k_b} + \vec{k_c}$
- transient absorption
- DOVE

But also different color combinations and dimensions explored.

MR-CMDS development

Blaise Thompson

- Tunability Acquisition
- Extensibility
- Processing
- Conclusion
- Supplement

Blaise Thompson

Multidimensional

Tunability

- Acquisition Extensibility
- Processing
- Conclusion
- Supplement

Control and Calibration of Optical Parametric Amplifiers

Two strategies for CMDS

Blaise Thompson

Multidimensional

Tunability

Acquisition Extensibility Processing Conclusion

Two strategies for collecting multidimensional spectra:

Time Domain

- broadband pulses
- resolve spectra interferometrically
- ▶ fast (even single shot)
- robust

Frequency Domain

- narrowband pulses
- resolve spectra by tuning OPAs directly
- slow (lots of motor motion)
- fragile

Development of Frequency Domain Multidimensional Spectroscopy

Tunability

Acquisition Extensibility

Processing

Conclusion

Supplement

[FIGURE FROM LIT]

Development of Frequency Domain Multidimensional Spectroscopy

Tunability

Acquisition Extensibility

Processing

Conclusion

Supplement

Bandwidth

Blaise Thompson

Multidimensional

Tunability

Acquisition Extensibility Processing

Conclusion

Supplement

TOPAS-C

Blaise Thompson

Tunability

- Acquisition Extensibility
- Processing
- Conclusion
- Supplement

Two "stages", each with two motorized optics.

Tuning

Blaise Thompson

Multidimensional

Tunability

Acquisition Extensibility Processing

Supplement

Tuning curves—recorded correspondence between motor positions and output color.

Exquisite sensitivity to alignment and lab conditions—tuning required roughly once a week.

Manual tuning is difficult...

- high dimensional motor space
- difficult to asses overall quality
- several hours of work per OPA (sometimes, an entire day for one OPA)

Preamp

Spectroscopy Blaise Thompson

Tunability

Acquisition Extensibility Processing Conclusion

Automation

Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition Extensibility Processing Conclusion Supplement

Fully automated OPA tuning

- less than 1 hour per OPA
- can be scheduled for odd times
- high quality from global analysis
- reproducible
- unambiguous representations

Other calibration steps also automated.

Acquisition

Blaise Thompson

Tunability

Acquisition

Extensibility

Processing

Conclusion

Supplement

Control of the MR-CMDS Instrument

The instrument

Blaise Thompson

Multidimensional

Funability

Acquisition

- Processing
- Conclusion
- Supplement

Many kinds of component hardware

- monochromators
- delay stages
- filters
- OPAs
- \sim 10 settable devices, \sim 25 motors. Multiple detectors.

Pipeline

Blaise Thompson

Tunability

Acquisition

Processing

Conclusion

Supplement

What does the "pipeline" of MR-CMDS data acquisition and processing look like in the Wright Group?

How to increase data throughput and quality, while decreasing frustration of experimentalists?

Acquisition

Multidimensional

Blaise Thompson

Postino

Position

Position

Position

Acquisition

PyCMDS-unified software for controlling hardware and collecting data.

Abstraction

Blaise Thompson

Tunability

Acquisition

Extensibility

Processing

Conclusion

Supplement

Hardware—something that has a position that can be set.

Sensor-something that has a signal that can be read.

Central loop

Blaise Thompson

Tunability

Acquisition

Extensibility

Processing

Conclusion

Supplement

Everything is multi-threaded (simultaneous motion, simultaneous read).

Acquisitions

Blaise Thompson

Tunability

Acquisition

Processing

Conclusion

Supplement

Acquisition modules-a GUI that accepts a user instruction.

Development of Frequency Domain Multidimensional Spectroscopy

Blaise Thompson

Funability

Acquisition

Extensibility

Processing

Conclusion

Supplement

Q	ueue.	
~	0.00.01	

Instrume Instrume Number Num	
Source So	energy) el 1550.000 (mr. [il 1250.000 (mr.] http://www.second.org/linear- second.org/) el 100.000 (mr.]
National (mathematical) Type: State Late Description National (mathematical) 0 acquator (MALD) 15:0000 (mathematical) 0 acquator (MALD) 15:0000 (mathematical) 0 (mathematical) mathematical) mathemati	
Partico Partico <t< th=""><th>energy) al 1550.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 100.000 (m) (</th></t<>	energy) al 1550.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 1250.000 (m) (al 100.000 (m) (
DM-0000 II Standbor Filt Standbor Filt	
Display Space/Space Computing 2 sequence Computing 2 sequence Computing 2 sequence Space/Space Space	energy) al 3100.000 [mn.]
Newton 1220000 (m) 3 aquator 155/822 50/41 (m) 4 4000 n 16400.000 (m) 4 aquator 155/822 50/41 (m) 1000 m2 1000 m2 n 16400.000 (m) 5 aquator 155/813 155/813 50/81 (m) 1000 m2 1000 m2 Nation 155/813 152/813 152/813 50/81 (m) 1000 1000 m2 1000 m2 1000 m2 1000 m2 1000 m3 1000 1000 m3 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	2 2 energy) 64 3100.000 [941]
Start NUMCO () Start NUMC	2 energy) al <u>3160.000 (wn (</u>
m 144400.00 (m) * acquardos Convertit 15.94(1) 10.000 vol vol parto 15000.000 (m) * acquardos Convertit 15.94(1) 12.04(1) 10.000 vol vol parto 15000.000 (m) * acquardos Convertit 15.94(1) 12.04(1) 10.000 vol 10.000 10.000 10.000 10.000 11.010 </td <td>energy) al <u>3100.000 (m)</u></td>	energy) al <u>3100.000 (m)</u>
Nation [1500.000] (m) 5 acquator COMPLIT 15.46201 17.20241 SOAIn (%, wil) L0000 11.00 NUMACTD 6 acquators 6 acquators 10.00 <t< td=""><td>energy) al 3100.000 [wn]</td></t<>	energy) al 3100.000 [wn]
OvvMicto Image: Transmission (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	al 3100.000 [wn]
vometers Prod	a [a100,000] [min [
MicroHR)	a [2300.000] [mi] [
n 17919.78 vm 🗉	nber [121
Noston 18020.000 (vm F	
Grading 1	i 🗆
	ADD ENERGY AXIS
	ADD DELAY AXIS
	REMOVE AXIS
	nstants
	nstant
MC) Hard	dware wm
n -1.800 ps •	vression w1-w2+w3
Poston 1.800 [ps •]	REMOVE ADD
DVARCED SET	ocessing
Man Andrea	n Channel signal_dff
Proc	cess Al Channels
DVARCED DV	vice Settings
ms	Wat 0
	1-6251
000 901	- 200
	e Shots
	SAVE FILE

Blaise Thompson

Multidimensional

Tunability

Acquisition

- Duccessing
- Conclusion
- Supplement

Soon after the queue was first implemented, we collected more pixels in two weeks than had been collected over the previous three years.

Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition Extensibility

Processing Conclusion

Development of Frequency Domain	тос
Multidimensional Spectroscopy	
Blaise Thompson	
Processing	

Flexible data model

Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition Extensibility Processing

Conclusion Supplement

Flexibility to transform into any desired "projection" on component variables.

Development of Frequency Domain	Conclusion
Multidimensional Spectroscopy	
Blaise Thompson	
Conclusion	

Modular hardware model

Multidimensional

Tunability

Acquisitio

Processing

Conclusion

```
Supplement
```


Modular sensor model

Blaise Thompson

Multidimensional

- Funability Acquisition ^{Extensibility} Processing
- Conclusion
- Supplement

Each sensor contributes one or more channels.

Sensors with size contribute new variables (dimensions).

Universal format

Blaise Thompson

Multidimensional

Tunability Acquisition Extensibility

- Processing
- Conclusion
- Supplement

- store multiple multidimensional arrays
- metadata
- Import data from a variety of sources.
 - previous Wright Group acquisition software
 - commercial instruments (JASCO, Shimadzu, Ocean Optics)

Domains of CMDS

Blaise Thompson

- Tunability Acquisition Extensibility
- Processing
- Conclusion
- Supplement

CMDS can be collected in two domains:

- time domain
- frequency domain

Blaise Thompson

Multidimensional

Funability Acquisition Extensibility Processing Conclusion

Supplement

Multiple broadband pulses are scanned in *time* to collect a multidimensional interferogram (analogous to FTIR, NMR).

A local oscillator must be used to measure the phase of the output.

This technique is...

- ▶ fast (even single shot)
- robust

pulse shapers have made time-domain CMDS (2DIR) almost routine.

Blaise Thompson

Multidimensional

Funability Acquisition Extensibility Processing Conclusion

Supplement

In the Wright Group, we focus on *frequency* domain "Multi-Resonant" (MR)-CMDS.

Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses. Multidimensional spectra are collected "directly" by scanning OPAs against each-other.

This strategy is...

- slow (must directly visit each pixel)
- fragile (many crucial moving pieces)

but! It is incredibly flexible.

Selection rules

Blaise Thompson

- Tunability Acquisition Extensibility
- Processing
- Conclusion
- Supplement

MR-CMDS can easily collect data without an external local oscillator.

This means... [BOYLE]

Development of Frequency Domain	MR-CMDS theory
lultidimensional Spectroscopy	
laise Thompson	
ıpplement	

Development of Frequency Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition

Extensibility

Processing

Conclusion

Supplement

Mixed domain