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Diversity

Great diversity of experimental strategies.

Different phase matching conditions...
transient grating I:a — k7, + l<:
transient absorption
DOVE

But also different color combinations and dimensions explored.




Pipeline

What does the “pipeline” of MR-CMDS data acquisition and processing look like
in the Wright Group?

How to increase data throughput and quality, while decreasing frustration of
experimentalists?




MR-CMDS development

[SUMMARY SLIDE FOR REMAINDER OF PRESENTATION]




Tunability

Control and Calibration of
Optical Parametric Amplifiers




Two strategies for CMDS

Tunability

Two strategies for collecting multidimensional spectra:

Time Domain Frequency Domain
broadband pulses narrowband pulses
resolve spectra resolve spectra by tuning
interferometrically OPAs directly
fast (even single shot) slow (lots of motor motion)

robust fragile




Postage stamp

[FIGURE FROM LIT]
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[FIGURE FROM CZECH]
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TOPAS-C

Tunability

Two “stages”, each with two motorized optics.




Tuning

Tunability Tuning curves—recorded correspondence between motor positions and output
color.

Exquisite sensitivity to alignment and lab conditions—tuning required roughly
once a week.

Manual tuning is difficult...
high dimensional motor space
difficult to asses overall quality

several hours of work per OPA (sometimes, an entire day for one OPA)
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Tunability

C1 (deg)

Automation

Fully automated OPA tuning

200 less than 1 hour per OPA

:: can be scheduled for odd times
125 2 high quality from global analysis
1.00 g reproducible

075 < unambiguous representations
030 automatically generated

0.25

0.00

Other calibration steps also automated.



Acquisition

Control of the MR-CMDS
Instrument




The instrument

Acquisition

Many kinds of component hardware
monochromators
delay stages
filters
OPAs

~ 10 settable devices, ~ 25 motors, multiple detectors.
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Acquisition
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Central loop

Acquisition

At its core, PyCMDS does something very simple...
Set, wait, read, wait, repeat.

Everything is multi-threaded (simultaneous motion, simultaneous read).

decrease scan time by up to ~ 2x, more for complex experiments




Extensibility




Modular Hardware Model

[DARIEN ADDED AEROTECH IN ONE DAY] [I ADDED NEW OPA IN TWO
DAYS]




Acquisition Modules

[SUNDEN ADDED POYNTING TUNE IN SEVERAL DAYS]
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Queue

This strategy can be incredibly productive!

Soon after the queue was first implemented, we collected more pixels in two
weeks than had been collected over the previous three years.




Acquisition

Artifact Rejection




Shots Processing

Artifacts

[DIGITAL SHOTS PROCESSING—NO MORE BOXCARS]




Processing

Data Processing




Dimensionality




Processing

Flexible data model

Flexibility to transform into any desired “projection” on component variables.
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Conclusion

[CONCLUSION]

Conclusion
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Modular hardware model

Hardware
— Delay
Aerotech
LTS300
MFA
PMC
— Filter
L — Homebuilt
— OPA
Supplement OPA8B00/PMC
TOPAS
|: TOPAS-C
TOPAS-800
—— Spectrometer
L MicroHR
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Modular sensor model

Can have as many sensors as needed.
Each sensor contributes one or more channels.

Supplement Sensors with size contribute new variables (dimensions).

)




Supplement
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Universal format

WrightTools defines a universal file format for CMDS.
store multiple multidimensional arrays
metadata

Import data from a variety of sources.
previous Wright Group acquisition software

commercial instruments (JASCO, Shimadzu, Ocean Optics)



Domains of CMDS

CMDS can be collected in two domains:
time domain

frequency domain

Supplement

)




Time domain

Multiple broadband pulses are scanned in time to collect a multidimensional
interferogram (analogous to FTIR, NMR).

A local oscillator must be used to measure the phase of the output.

This technique is...
S fast (even single shot)
robust

pulse shapers have made time-domain CMDS (2DIR) almost routine.

)




Frequency domain

In the Wright Group, we focus on frequency domain “Multi-Resonant”
(MR)-CMDS.

Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively
narrow-band pulses. Multidimensional spectra are collected “directly” by
scanning OPAs against each-other.

Supplement

This strategy is...
slow (must directly visit each pixel)
fragile (many crucial moving pieces)

but! It is incredibly flexible.

)




Selection rules

MR-CMDS can easily collect data without an external local oscillator.

This means... [BOYLE]

Supplement

)




MR-CMDS theory




Mixed domain

[FIGURES FROM DAN’S PAPER]
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