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Chapter 1

Introduction

1.1 Coherent Multidimensional Spectroscopy

CMDS, coherent multidimensional spectroscopy

1.2 The CMDS Instrument

From an instrumental perspective, MR-CMDS is a problem of calibration and coordination. Within the

Wright Group, each of our two main instruments are composed of roughly ten actively moving compo-

nent hardwares. Many of these components are purchased directly from vendors such as SpectraPhysics,

National Instruments, Horiba, Thorlabs, and Newport. Others are created or heavily modified by grad-

uate students. The Wright Group has always maintained custom acquisition software packages which

control the complex, many-stepped dance that these components must perform to acquire MR-CMDS

spectra.
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1.3 Scientific Software

When I joined the Wright Group, I saw that acquisition software was a real barrier to experimental

progress and flexibility. Graduate students had ideas for instrumental enhancements that were infeasible

because of the challenge of incorporating the new components into the existing software ecosystem.

At the same time, students were spending much of their time in lab repeatedly calibrating optical

parametric amplifiers by hand, a process that sometimes took days. I chose to spend a significant

portion of my graduate career focusing on solving these problems through software development. At

first, I focused on improving the existing LabVIEW code. Eventually, I developed a vision for a deeply

modular acquisition software that could not be practically created with LabVIEW. Using Python and Qt,

I created a brand new acquisition software PyCMDS: built from the ground up to fundamentally solve

historical challenges in the Group. PyCMDS offers a modular hardware model that can “re-configure”

itself to flexibly control a variety of component hardware configurations. This has enabled graduate

students to add and remove hardware whenever necessary, without worrying about a heavy additional

programming burden. PyCMDS is now used to drive both MR-CMDS instruments in the Group, allowing

for easy sharing of component hardware and lessening the total amount of software that the Group needs

to maintain. Besides being more flexible, PyCMDS solves a number of other problems. It offers fully

automated strategies for calibrating component hardwares, making calibration less arduous and more

reproducible. It offers more fine-grained control of data acquisition and timing, enabling more complex

algorithms to quickly acquire artifact-free results. In conjunction with other algorithmic and hardware

improvements that I have made, PyCMDS has decreased acquisition times by up to two orders of

magnitude. A companion software, WrightTools (which I also created), solves some of the processing

and representation challenges of multidimensional data.
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Part I

Background
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Chapter 2

Spectroscopy

A hundred years ago, Auguste Comte, . . . a great philosopher, said that humans will never be able to
visit the stars, that we will never know what stars are made out of, that that’s the one thing that science
will never ever understand, because they’re so far away. And then, just a few years later, scientists took
starlight, ran it through a prism, looked at the rainbow coming from the starlight, and said: “Hydrogen!”
Just a few years after this very rational, very reasonable, very scientific prediction was made, that we’ll
never know what stars are made of.

– Michio Kaku
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In this chapter I lay out the foundations of spectroscopy.

2.1 Light

2.2 Light-Matter Interaction

Spectroscopic experiments all derive from the interaction of light and matter. Many material properties

can be deduced by measuring the nature of this interaction.

Nonlinear spectroscopy relies upon higher-order terms in the light-matter interaction. In a generic

system, each term is roughly ten times smaller than the last.

2.2.1 Representations

Many strategies have been introduced for diagrammatically representing the interaction of multiple

electric fields in an experiment.

Circle Diagrams

Double-sided Feynman Diagrams

WMEL Diagrams

So-called wave mixing energy level (WMEL) diagrams are the most familiar way of representing spec-

troscopy for Wright group members. WMEL diagrams were first proposed by Lee and Albrecht in

an appendix to their seminal work A Unified View of Raman, Resonance Raman, and Fluorescence

Spectroscopy [2]. WMEL diagrams are drawn using the following rules.

1. The energy ladder is represented with horizontal lines - solid for real states and dashed for virtual

states.
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2. Individual electric field interactions are represented as vertical arrows. The arrows span the distance

between the initial and final state in the energy ladder.

3. The time ordering of the interactions is represented by the ordering of arrows, from left to right.

4. Ket-side interactions are represented with solid arrows.

5. Bra-side interactions are represented with dashed arrows.

6. Output is represented as a solid wavy line.

Mukamel Diagrams

2.3 Linear Spectroscopy

2.3.1 Reflectivity

This derivation adapted from Optical Processes in Semiconductors by Jacques I. Pankove [3]. For

normal incidence, the reflection coefficient is

R =
(n − 1)2 + k2

(n + 1)2 + k2
(2.1)

Further derivation adapted from [4]. To extend reflectivity to a differential measurement

2.4 Coherent Multidimensional Spectroscopy

multiresonant coherent multidimensional spectroscopy

2.4.1 Three Wave

2.4.2 Four Wave

Fluorescence
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Raman

2.4.3 Five Wave

2.4.4 Six Wave

multiple population-period transient spectroscopy (MUPPETS)

2.5 Strategies for CMDS

2.5.1 Homodyne vs. Heterodyne Detection

Two kinds of spectroscopies: 1) heterodyne 2) homodyne. Heterodyne techniques may be self hetero-

dyne or explicitly heterodyned with a local oscillator.

In all heterodyne spectroscopies, signal goes as N. In all homodyne spectroscopies, signal goes as N2.

This literally means that homodyne signals go as the square of heterodyne signals, which is what we

mean when we say that homodyne signals are intensity level and heterodyne signals are amplitude level.

Transient absorption, TA

2.5.2 Frequency vs. Time Domain

Time domain techniques become more and more difficult when large frequency bandwidths are needed.

With very short, broad pulses:

• Non-resonant signal becomes brighter relative to resonant signal

• Pulse distortions become important.

This epi-CARS paper might have some useful discussion of non-resonant vs resonant for shorter and

shorter pulses [5].
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An excellent discussion of pulse distortion phenomena in broadband time-domain experiments was pub-

lished by Spencer et al. [6].

Another idea in defense of frequency domain is for the case of power studies. Since time-domain pulses

in-fact possess all colors in them they cannot be trusted as much at perturbative fluence. See that paper

that Natalia presented...

2.5.3 Triply Electronically Enhanced Spectroscopy

Triply Electronically Enhanced (TrEE) spectroscopy has become the workhorse homodyne-detected 4WM

experiment in the Wright Group.

2.5.4 Transient Absorbance Spectroscopy

Transient absorption (TA)

Quantitative TA

Transient absorbance (TA) spectroscopy is a self-heterodyned technique. Through chopping you can

measure nonlinearities quantitatively much easier than with homodyne detected (or explicitly hetero-

dyned) experiments.
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Figure 2.1: CAPTION TODO
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Figure 2.1 diagrams the TA measurement for a generic sample. Here I show measurement of both the

reflected and transmitted probe beam . . . not important in opaque (pyrite) or non-reflective (quantum

dot) samples . . .

Typically one attempts to calculate the change in absorbance ∆A . . .

∆A = Aon − Aoff (2.2)

= − log10

(
IT + IR + I∆T + I∆R

I0

)
+ log

(
IT + IR

I0

)
(2.3)

= − (log10(IT + IR + I∆T + I∆R)− log10(I0)) + (log10(IT + IR)− log10(I0)) (2.4)

= − (log10(IT + IR + I∆T + I∆R)− log10(IT + IR)) (2.5)

= − log10

(
IT + IR + I∆T + I∆R

IT + IR

)
(2.6)

Equation 2.6 simplifies beautifully if reflectivity is negligible . . .

Now I define a variable for each experimental measurable:

VT voltage recorded from transmitted beam, without pump

VR voltage recorded from reflected beam, without pump

V∆T change in voltage recorded from transmitted beam due to pump

V∆R change in voltage recorded from reflected beam due to pump

We will need to calibrate using a sample with a known transmisivity and reflectivity constant:

VT, ref voltage recorded from transmitted beam, without pump

VR, ref voltage recorded from reflected beam, without pump

Tref transmissivity

Rref reflectivity
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Define two new proportionality constants...

CT ≡ T
VT

(2.7)

CR ≡ R
VR

(2.8)

These are explicitly calibrated (as a function of probe color) prior to the experiment using the calibration

sample.

Given the eight experimental measurables (VT, VR, V∆T, V∆R, VT, ref , VR, ref , Tref , Rref) I can express

all of the intensities in Equation 2.6 in terms of I0.

CT =
Tref

VT, ref
(2.9)

CR =
Rref

VR, ref
(2.10)

IT = I0CTVT (2.11)

IR = I0CRVR (2.12)

I∆T = I0CTV∆T (2.13)

I∆R = I0CRV∆R (2.14)

Wonderfully, the I0 cancels when plugged back in to Equation 2.6, leaving a final expression for ∆A

that only depends on my eight measurables.

∆A = − log10

(
CT(VT + V∆T) + CR(VR + V∆R)

CTVT + CRVR

)
(2.15)
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2.5.5 Cross Polarized TrEE

2.5.6 Pump-TrEE-Probe

Pump TrEE probe (PTP).

2.6 Instrumental Response Function

The instrumental response function (IRF) is a classic concept in analytical science. Defining IRF becomes

complex with instruments as complex as these, but it is still useful to attempt.

It is particularly useful to define bandwidth.

2.6.1 Time Domain

I will use four wave mixing to extract the time-domain pulse-width. I use a driven signal e.g. near

infrared carbon tetrachloride response. I’ll homodyne-detect the output. In my experiment I’m moving

pulse 1 against pulses 2 and 3 (which are coincident).

The driven polarization, P, goes as the product of my input pulse intensities:

P(T ) = I1(t − T )× I2(t)× I3(t) (2.16)

In our experiment we are convolving I1 with I2× I3. Each pulse has an intensity-level width, σ1, σ2, and

σ3. I2 × I3 is itself a Gaussian, and

σI2I3 = ... (2.17)

=

√
σ2

2σ
2
3

σ2
2 + σ2

3

. (2.18)
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The width of the polarization (across T ) is therefore

σP =
√
σ2

1 + σ2
I2I3

(2.19)

= ... (2.20)

=

√
σ2

1 + σ2
2σ

2
3

σ2
1 + σ2

2

. (2.21)

I assume that all of the pulses have the same width. I1, I2, and I3 are identical Gaussian functions with

FWHM σ. In this case, Equation 2.21 simplifies to

σP =

√
σ2 + σ2σ2

σ2 + σ2
(2.22)

= ... (2.23)

= σ

√
3

2
(2.24)

Finally, since we measure σP and wish to extract σ:

σ = σP

√
2

3
(2.25)

Again, all of these widths are on the intensity level.

2.6.2 Frequency Domain

We can directly measure σ (the width on the intensity-level) in the frequency domain using a spectrom-

eter. A tune test contains this information.
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2.6.3 Time-Bandwidth Product

For a Gaussian, approximately 0.441
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Chapter 3

Materials

”Kroemer’s Lemma of Proven Ignorance”: If, in discussing a semiconductor problem, you cannot draw

an Energy Band Diagram, this shows that you don’t know what you are talking about, If you can draw

one, but don’t, then your audience won’t know what you are talking about.
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Chapter 4

Software

The following guidelines are to be used in the documentation of all software developed in the Wright
group for the IBM 9000 computer. These rules have arisen as a necessary consequence of the group’s
programming philosophy of writing software in the form of units which can be readily shared among
a number of programmers. The approach outlined here should help to avoid some of the confusion
otherwise produced by several persons simultaniously developing and modifying shared software.

– Roger Carlson, “Software Development Guidelines” (1988) [CarlsonRogerJ1988a]
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Cutting-edge science increasingly relies on custom software. In their 2008 survey, Hannay et al. [7]

demonstrated just how important software is to the modern scientist.

→ 84.3% of surveyed scientists state that developing scientific software is important or very important
for their own research.

→ 91.2% of surveyed scientists state that using scientific software is important or very important for
their own research.

→ On average, scientists spend approximately 40% of their work time using scientific software.
→ On average, scientists spend approximately 30% of their work time developing scientific software.

Despite the importance of software to science and scientists, most scientists are not familiar with

basic software engineering concepts. This is in part due to the their general lack of formal training

in programming and software development. Hannay et al. [7] found that over 90% of scientists learn

software development through ‘informal self study’. Indeed, I myself have never been formally trained

in software development.

Software development in a scientific context poses unique challenges. Many traditional software develop-

ment paradigms demand an upfront articulation of goals and requirements. This allows the developers

to carefully design their software, even before a single line of code is written. In her seminal 2005

case study Segal [8] describes a collaboration between a team of researchers and a contracted team of

software engineers. Ultimately
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Part II

Development
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Chapter 5

Processing
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From a data science perspective, CMDS has several unique challenges:

→ Dimensionality of datasets can typically be greater than two, complicating representation.
→ Shape and dimensionality change...
→ Data can be large (over one million points).

I have designed a software package that directly addresses these issues.

WrightTools is a software package at the heart of all work in the Wright Group.

WrightTools is written in Python, and endeavors to have a “pythonic”, explicit and “natural” application

programming interface (API). To use WrightTools, simply import:

>>> import WrightTools as wt

>>> wt.__version__

3.0.0

(5.1)

I’ll discuss more about how exactly WrightTools packaging, distribution, and instillation works in ??.

We can use the builtin Python function dir to interrogate the contents of the WrightTools package.
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>>> dir(wt)

['Collection',

'Data',

'__branch__',

'__builtins__',

'__cached__',

'__doc__',

'__file__',

'__loader__',

'__name__',

'__package__',

'__path__',

'__spec__',

'__version__',

'__wt5_version__',

'_dataset',

'_group',

'_open',

'_sys',

'artists',

'collection',

'data',

'diagrams',

'exceptions',

'kit',

'open',

'units']

(5.2)

Many of these are dunder (double underscore) attributes—Python internals that are not normally used

directly. The ten attributes that do not start with underscore are the public API that users of WrightTools

typically use. Within the public API are two classes, Collection & Data , which are the two main

classes in the WrightTools object model. Data stores spectra directly as multidimensional arrays, and

Collection stores groups of data objects (and other collection objects) in a hierarchical way for

internal organization purposes.

5.1 Data object model

WrightTools uses a programming strategy called object oriented programming (OOP).

It contains a central data “container” that is capable of storing all of the information about each

multidimensional (or one-dimensional) spectra: the Data class. It also defines a Collection class
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that contains data objects, collection objects, and other pieces of metadata in a hierarchical structure.

Let’s first discuss pythonData.

All spectra are stored within WrightTools as multidimensional arrays. Arrays are containers that store

many instances of the same data type, typically numerical datatypes. These arrays have some shape ,

size , and dtype . In the context of WrightTools, they can contain floats, integers, complex numbers

and NaNs.

The Data class contains everything that is needed to define a single spectra from a single experiment

(or simulation). To do this, each data object contains several multidimensional arrays (typically 2 to

50 arrays, depending on the kind of data). There are two kinds of arrays, instances of Variable and

Channel . Variables are coordinate arrays that define the position of each pixel in the multidimensional

spectrum, and channels are each a particular kind of signal within that spectrum. Typical variables

might be [w1, w2, w3, d1, d2] , and typical channels [pmt, pyro1, pyro2, pyro3] .

As an overview, the following lexicographically lists the attributes and methods of Data .

→ method collapse : Collapse along one dimension in a well-defined way.

→ method convert : Convert all axes of a certain kind.
→ method create_channel : Create a new channel.

→ method create_variable : Create a new variable.

→ method fullpath

→ method get_nadir

→ method get_zenith

→ method heal

→ attribute kind

→ method level

→ method map_variable

→ attribute natural_name

→ attribute ndim

→ method offset

→ method print_tree

→ method remove_channel

→ method remove_variable

→ method rename_channels

→ method rename_variables

→ attribute shape

→ method share_nans

→ attribute size
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→ method smooth

→ attribute source

→ method split

→ method transform

→ attribute units

→ attribute variable_names

→ attribute variables

→ method zoom

Each data object contains instances of Channel and Variable which represent the principle multidi-

mensional arrays. The following lexicographically lists the attributes of these instances. Certain methods

and attributes are unique to only one type of dataset, and are marked as such.

→ method argmax

→ method argmin

→ method chunkwise

→ method clip

→ method convert

→ attribute full

→ attribute fullpath

→ attribute label (variable only)
→ method log

→ method log10

→ method log2

→ method mag

→ attribute major_extent (channel only)
→ method max

→ method min

→ attribute minor_extent (channel only)

→ attribute natural_name

→ method normalize (channel only)
→ attribute null (channel only)
→ attribute parent

→ attribute points

→ attribute signed (channel only)

→ method slices

→ method symmetric_root

→ method trim (channel only)

Channels and variables also support direct indexing / slicing using __getitem__ , as discussed more

in...
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Axes are ways to organize data as functional of particular variables (and combinations thereof). The

Axis class does not directly contain the respective arrays—it refers to the associated variables. The

flexibility of this association is one of the main new features in WrightTools 3. Axis expressions are

simple human-friendly strings made up of numbers and variable natural_name s. Given 5 variables with

names ['w1', 'w2', 'wm', 'd1', 'd2'] , example valid expressions include 'w1' , 'w1=wm' ,

'w1+w2' , '2*w1' , 'd1-d2' , and 'wm-w1+w2' . Axes can be directly indexed / sliced into using

__getitem__ , and they support many of the “numpy-like” attributes. A lexicographical list of axis

attributes and methods follows.

→ attribute full

→ attribute label

→ attribute natural_name

→ attribute ndim

→ attribute points

→ attribute shape

→ attribute size

→ attribute units_kind

→ attribute variables

→ method convert

→ method min

→ method max

5.1.1 Creating a data object

WrightTools data objects are capable of storing arbitrary multidimensional spectra, but how can we actu-

ally get data into WrightTools? If you start with a wt5 file, the answer is easy: wt.open(<filepath>) .

But what if you have data that was written using some other software? WrightTools offers data con-

version functions (“from” functions) that do the hard work of creating data objects from other files.

These from-functions are as parameter free as possible, which means they recognize details like shape

and units from each specific file format without manual user intervention.

The most important thing about from-functions is that they are extensible: that is, that more from-

functions can be easily added as needed. This modular approach to data creation means that individuals

who want to use WrightTools for new data sources can simply add one function to unlock the capabilities

of the entire package as applied to their data.
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Following are the current from-functions, and the types of data that they support.

→ Cary (collection creation)
→ COLORS
→ KENT
→ PyCMDS
→ Ocean Optics
→ Shimadzu
→ Tensor27

Discover dimensions

Certain older Wright Group file types (COLORS and KENT) are particularly difficult to import using a

parameter-free from-function. There are two problems:

→ Dimensionality limitation to individual files (1D for KENT, 2D for COLORS).
→ Lack of self-describing metadata.

The way that WrightTools handles data creation for these file-types deserves special discussion.

Firstly, WrightTools contains hardcoded column information for each filetype... For COLORS...

Secondly, WrightTools accepts a list of files which it stacks together to form a single large array.

Finally, the wt.kit.discover_dimensions function is called. This function does its best to recognize

the parameters of the original scan...

From directory

5.1.2 Math

Now that we know the basics of how the WrightTools Data class stores data, it’s time to do some

data manipulation. Let’s start with some elementary algebra.
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In place operators

Operators are... Because the Data object is mostly stored outside of memory, it is better to do

in-place...

Broadcasting...

Clip

Symmetric root

Log

5.1.3 Dimensionality manipulation

WrightTools offers several strategies for reducing the dimensionality of a data object. Also consider

using the fit sub-package.

Chop

Chop is one of the most important methods of data, although it is typically not called directly by users

of WrightTools.
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Collapse

Split

Join

5.1.4 The wt5 file format

Since WrightTools is based on the hdf5 file format...

5.2 Artists

After importing and manipulating data, one typically wants to create a plot. The artists sub-package

contains everything users need to plot their data objects. This includes both “quick” artists, which

generate simple plots as quickly as possible, and a full figure layout toolkit that allows users to generate

full publication quality figures. It also includes “specialty” artists which are made to perform certain

popular plotting operations, as I will describe below.

Currently the artists sub-package is built on-top of the wonderful matplotlib library. In the future, other

libraries (e.g. mayavi), may be incorporated.
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5.2.1 Quick

1D

2D

5.2.2 Specialty

5.2.3 Artists API

5.2.4 Colormaps

5.2.5 Interpolation

5.3 Fitting

5.4 Distribution and licensing

WrightTools is MIT licensed.

WrightTools is distributed on PyPI and conda-forge.

5.5 Future directions
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Chapter 6

Acquistion
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In the Wright Group, PyCMDS replaces the old acquisition softwares ‘ps control’, written by Kent Meyer

and ‘Control for Lots of Research in Spectroscopy’ written by Schuyler Kain.

PyCMDS directly addresses the hardware during experiments.

6.1 Overview

PyCMDS has, through software improvements alone, dramatically lessened scan times...

→ simultaneous motor motion

→ digital signal processing

→ ideal axis positions 6.2.1

6.2 Future directions

6.2.1 Ideal Axis Positions

Frequency domain multidimensional spectroscopy is a time-intensive process. A typical pixel takes

between one-half second and three seconds to acquire. Depending on the exact hardware being scanned

and signal being detected, this time may be mostly due to hardware motion or signal collection. Due

to the curse of dimensionality, a typical three-dimensional CMDS experiment contains roughly 100,000

pixels. CMDS hardware is transiently-reliable, so speeding up experiments is a crucial component of

unlocking ever larger dimensionalities and higher resolutions.

One obvious way to decrease the scan-time is to take fewer pixels. Traditionally, multidimensional scans

are done with linearly arranged points in each axis—this is the simplest configuration to program into

the acquisition software. Because signal features are often sparse or slowly varying (especially so in

high-dimensional scans) linear stepping means that most of the collected pixels are duplicates or simply

noise. A more intelligent choice of axis points can capture the same nonlinear spectrum in a fraction of

the total pixel count.
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An ideal distribution of pixels is linearized in signal, not coordinate. This means that every signal level

(think of a contour in the N-dimensional case) has roughly the same number of pixels defining it. If

some generic multidimensional signal goes between 0 and 1, one would want roughly 10% of the pixels

to be between 0.9 and 1.0, 10% between 0.8 and 0.9 and so on. If the signal is sparse in the space

explored (imagine a narrow two-dimensional Lorentzian in the center of a large 2D-Frequency scan)

this would place the majority of the pixels near the narrow peak feature(s), with only a few of them

defining the large (in axis space) low-signal floor. In contrast linear stepping would allocate the vast

majority of the pixels in the low-signal 0.0 to 0.1 region, with only a few being used to capture the

narrow peak feature. Of course, linearizing pixels in signal requires prior expectations about the shape

of the multidimensional signal—linear stepping is still an appropriate choice for low-resolution “survey”

scans.

CMDS scans often posses correlated features in the multidimensional space. In order to capture such

features as cheaply as possible, one would want to define regions of increased pixel density along

the correlated (diagonal) lineshape. As a concession to reasonable simplicity, our acquisition software

(PyCMDS) assumes that all scans constitute a regular array with-respect-to the scanned axes. We can

acquire arbitrary points along each axis, but not for the multidimensional scan. This means that we

cannot achieve strictly ideal pixel distributions for arbitrary datasets. Still, we can do much better than

linear spacing.

Almost all CMDS lineshapes (in frequency and delay) can be described using just a few lineshape

functions:

→ exponential
→ Gaussian
→ Lorentzian
→ bimolecular

Exponential and bimolecular dynamics fall out of simple first and second-order kinetics (I will ignore

higher-order kinetics here). Gaussians come from our Gaussian pulse envelopes or from normally-

distributed inhomogeneous broadening. The measured line-shapes are actually convolutions of the

above. I will ignore the convolution except for a few illustrative special cases. More exotic lineshapes

are possible in CMDS—quantum beating and breathing modes, for example—I will also ignore these.
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Derivations of the ideal pixel positions for each of these lineshapes appear below.

6.2.2 Exponential

Simple exponential decays are typically used to describe population and coherence-level dynamics in

CMDS. For some generic exponential signal S with time constant τ ,

S(t) = e−
t
τ . (6.1)

We can write the conjugate equation to 6.1, asking “what t do I need to get a cerain signal level?”:

log (S) = − t

τ
(6.2)

t = −(S). (6.3)

So to step linearly in t, my step size has to go as −τ log (S).

We want to go linearly in signal, meaning that we want to divide S into even sections. If S goes from

0 to 1 and we choose to acquire N points,

tn = −τ log
( n

N

)
. (6.4)

Note that tn starts at long times and approaches zero delay. So the first t1 is the smallest signal and

tN is the largest.

Now we can start to consider realistic cases, like where τ is not quite known and where some other

longer dynamics persist (manifested as a static offset). Since these values are not separable in a general
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system, I’ll keep S normalized between 0 and 1.

S = (1− c) e
− t

τactual +c (6.5)

Sn = (1− c) e
−

−τstep log ( n
N )

τactual +c (6.6)

Sn = (1− c) e
− τstep

τactual
log (N

n )
+c (6.7)

Sn = (1− c)

(
N

n

)− τstep
τactual

+ c (6.8)

Sn = (1− c)
( n

N

) τstep
τactual + c (6.9)
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Figure 6.1: TODO
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Part III

Applications
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[9] Tobias Brixner, Tomáš Mančal, Igor V. Stiopkin, and Graham R. Fleming. “Phase-stabilized two-
dimensional electronic spectroscopy”. In: The Journal of Chemical Physics 121.9 (Sept. 2004),
pp. 4221–4236. doi: 10.1063/1.1776112.

[10] Lena A Yurs, Stephen B. Block, Andrei V Pakoulev, Rachel S. Selinsky, Song Jin, and John
Wright. “Multiresonant Coherent Multidimensional Electronic Spectroscopy of Colloidal PbSe
Quantum Dots”. In: The Journal of Physical Chemistry C 115.46 (Nov. 2011), pp. 22833–
22844. doi: 10.1021/jp207273x.

[11] Koichi Furuta, Masanori Fuyuki, and Akihide Wada. “Cross-Term Selective, Two-Pulse Corre-
lation Measurements by Phase-Shifted Parallel Modulation for Analysis of a Multi-Photon Pro-
cess”. In: Applied Spectroscopy 66.12 (Dec. 2012), pp. 1475–1479. doi: 10.1366/12-06657.

https://doi.org/10.1063/1.4799110
https://doi.org/10.1021/jp003774a
https://doi.org/10.1021/acs.jpca.5b00001
https://doi.org/10.1109/secse.2009.5069155
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.1063/1.1776112
https://doi.org/10.1021/jp207273x
https://doi.org/10.1366/12-06657
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nant CARS and related nonlinear processes through a diagrammatic approach”. In: Journal de
Physique 40.9 (1979), pp. 819–840. doi: 10.1051/jphys:01979004009081900.

[27] J-L. Oudar and Y. R. Shen. “Nonlinear spectroscopy by multiresonant four-wave mixing”. In:
Physical Review A 22.3 (Sept. 1980), pp. 1141–1158. doi: 10.1103/PhysRevA.22.1141.

[28] John C. Wright, Peter C. Chen, James P. Hamilton, Arne Zilian, and Mitchell J. Labuda. “Theo-
retical Foundations for a New Family of Infrared Four-Wave Mixing Spectroscopies”. In: Applied
Spectroscopy 51.7 (July 1997), pp. 949–958. doi: 10.1366/0003702971941601.

[29] John C. Wright, Roger J. Carlson, Gregory B. Hurst, John K. Steehler, Michael T. Riebe, Bradford
B. Price, Dinh C. Nguyen, and Steven H. Lee. “Molecular, multiresonant coherent four-wave
mixing spectroscopy”. In: International Reviews in Physical Chemistry 10.4 (Oct. 1991), pp. 349–
390. doi: 10.1080/01442359109353262.

[30] Andrei V. Pakoulev, Mark a Rickard, Kent a. Meyer, Kathryn Kornau, Nathan a. Mathew,
David E. Thompson, and John C. Wright. “Mixed Frequency/Time Domain Optical Analogues
of Heteronuclear Multidimensional NMR”. In: The Journal of Physical Chemistry A 110.10 (Mar.
2006), pp. 3352–3355. doi: 10.1021/jp057339y.

[31] Andrei V. Pakoulev, Mark A Rickard, Nathan A Mathew, Kathryn M. Kornau, and John C.
Wright. “Spectral Quantum Beating in Mixed Frequency/Time-Domain Coherent Multidimen-
sional Spectroscopy”. In: The Journal of Physical Chemistry A 111.30 (Aug. 2007), pp. 6999–
7005. doi: 10.1021/jp071929+.

[32] Daniel D. Kohler, Stephen B. Block, Schuyler Kain, Andrei V. Pakoulev, and John C. Wright.
“Ultrafast Dynamics within the 1S Exciton Band of Colloidal PbSe Quantum Dots Using Mul-
tiresonant Coherent Multidimensional Spectroscopy”. In: The Journal of Physical Chemistry C
118.9 (Mar. 2014), pp. 5020–5031. doi: 10.1021/jp412058u.

[33] Maxim F. Gelin, Dassia Egorova, and Wolfgang Domcke. “Efficient Calculation of Time- and
Frequency-Resolved Four-Wave-Mixing Signals”. In: Accounts of Chemical Research 42.9 (Sept.
2009), pp. 1290–1298. doi: 10.1021/ar900045d.

[34] Peter Hamm, Manho Lim, William F. DeGrado, and Robin M Hochstrasser. “Pump/probe self
heterodyned 2D spectroscopy of vibrational transitions of a small globular peptide”. In: The
Journal of Chemical Physics 112.4 (Jan. 2000), pp. 1907–1916. doi: 10.1063/1.480772.

[35] J R Salcedo, A E Siegman, D D Dlott, and M D Fayer. “Dynamics of Energy Transport in
Molecular Crystals: The Picosecond Transient-Grating Method”. In: Physical Review Letters
41.2 (July 1978), pp. 131–134. doi: 10.1103/PhysRevLett.41.131.

[36] John T. Fourkas, Rick Trebino, and M. D. Fayer. “The grating decomposition method: A new
approach for understanding polarization-selective transient grating experiments. I. Theory”. In:
The Journal of Chemical Physics 97.1 (July 1992), pp. 69–77. doi: 10.1063/1.463565.

[37] John T Fourkas, Rick Trebino, and M D Fayer. “The grating decomposition method: A new
approach for understanding polarization-selective transient grating experiments. II. Applications”.
In: The Journal of Chemical Physics 97.1 (July 1992), pp. 78–85. doi: 10.1063/1.463525.
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