From 2514e7edee8cd66f6bc2e966082168b9663f7450 Mon Sep 17 00:00:00 2001 From: Blaise Thompson Date: Wed, 9 May 2018 16:52:28 -0500 Subject: 2018-05-09 16:52 --- processing/chapter.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'processing') diff --git a/processing/chapter.tex b/processing/chapter.tex index 2bb569e..cfcaba8 100644 --- a/processing/chapter.tex +++ b/processing/chapter.tex @@ -197,7 +197,7 @@ As examples: \item The \python{closest_pair} function finds the pair(s) of indices corresponding to the closest elements in an array. % \end{ditemize} - + \begin{table} \begin{tabular}{c | c | l} & type & description \\ \hline @@ -526,7 +526,7 @@ The primary attributes and methods of \python{Collection} are \item attribute \python{item_names} \item attribute \python{fullpath} \end{ditemize} -% TODO: finish adding attributes and methodsd +% TODO: finish adding attributes and methodsd Collections are useful because they allow WrightTools users to ``carry around'' several associated data objects in the same file. % @@ -608,7 +608,7 @@ perceptual. % Qualitative colormaps have random orderings of color. % They are best used to represent unordered things, and they typically have high dynamic range. % Perceptual colormaps are monotonic in lightness, and are best at representing ordered information -(like signal levels in MR-CMDS). % +(like signal levels in MR-CMDS). \cite{LiuYang2018a} % Historically the Wright Group has used a qualitative colormap for all plotting. % \autoref{pro:fig:cmaps} shows the red, green, and blue components of four different colormaps. % @@ -646,7 +646,7 @@ In \autoref{pro:fig:fill_types} the edges of the Delaunay triangles are drawn fo Such interpolation methods result in \emph{smoother} looking spectra, but they can look strange and cause visual artifacts. % ``pcolor'' is a much more direct approach that results in \emph{blocky} but honest two-dimensional -plots. % +plots. % \begin{figure} \includegraphics[scale=0.5]{"processing/wright_cmap"} @@ -991,7 +991,7 @@ This dataset can be chopped to it's component 2D \python{('wm'', 'w1')} spectra. data created at /tmp/lzyjg4au.wt5::/ axes ('wm'', 'w2', 'w1') shape (35, 11, 11) ->>> chopped = data.chop('wm', 'w1') +>>> chopped = data.chop('wm', 'w1') chopped data into 11 piece(s) in ('wm', 'w1'') >>> chopped.chop000 @@ -1164,7 +1164,7 @@ dataset—it’s really useful for inspecting the quality of your fit procedure. \includegraphics[width=0.4\textwidth]{"processing/fit_amplitude"} \includegraphics[width=0.4\textwidth]{"processing/fit_tau"} \caption{ - Fitting as dimensionality reduction. + Fitting as dimensionality reduction. } \label{pro:fig:fitted_movie} \end{figure} @@ -1323,7 +1323,7 @@ pip (``pip installs packages'', ``pip installs python'', or ``preferred installe can be used to install packages directly from PyPI: % \begin{codefragment}{bash} pip install WrightTools -\end{codefragment} +\end{codefragment} Conda is a multilingual package manager that handles virtual environments and dependencies, even binary dependencies, in a hassle-free way. % -- cgit v1.2.3