From 1b66cf20d0f40741d89d39b901716341beeabeca Mon Sep 17 00:00:00 2001 From: Blaise Thompson Date: Mon, 16 Oct 2017 21:05:20 -0500 Subject: structure --- .../src/H0.py | 171 --------------------- 1 file changed, 171 deletions(-) delete mode 100644 figures/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py (limited to 'figures/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py') diff --git a/figures/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py b/figures/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py deleted file mode 100644 index e040203..0000000 --- a/figures/instrument/scatter/2016.05.02 16-33-15 current delay space/src/H0.py +++ /dev/null @@ -1,171 +0,0 @@ -""" -@author: Dan - -each instance of running this depends on a few initial conditions that have to -be specified: - out_group - rho_0 - wa_central - a_coupling - gamma - dipoles - -so create a class where all these can describe the specific instance -""" - -from NISE.lib.misc import * - -def gen_w_0(wa_central, a_coupling): - # convert nice system parameters into system vector indeces - w_ag = wa_central - w_2aa = w_ag - a_coupling - w_2ag = 2*w_ag - a_coupling - w_gg = 0. - w_aa = w_gg - return np.array( [w_gg, w_ag, -w_ag, w_aa, w_2ag, w_ag, w_2aa] ) - -def gen_Gamma_0(tau_ag, tau_aa, tau_2ag, tau_2aa): - # same as gen_w_0, but for dephasing/relaxation times - tau = np.array( [np.inf, tau_ag, tau_ag, - tau_aa, tau_2ag, - tau_ag, tau_2aa ] ) - Gamma = 1/tau - return Gamma - -class Omega: - # record the propagator module used to evolve this hamiltonian - propagator = 'rk' - # phase cycling is not valuable in this hamiltonian - pc = False - # all attributes should have good initial guesses for parameters - dm_vector = ['gg1','ag','ga','aa','2ag','ag2','2aa'] - #out_group = [[6,7]]#,[7]] - out_group = [[5],[6]] # use this to separate alpha/gamma from beta for now - #--------------------------Oscillator Properties-------------------------- - rho_0 = np.zeros((len(dm_vector)), dtype=np.complex64) - rho_0[0] = 1. - # 1S exciton central position - wa_central = 7000. - # exciton-exciton coupling - a_coupling = 0. # cm-1 - # dephasing times, fs - tau_ag = 50. - tau_aa = np.inf #1./2000. - tau_2aa = tau_ag - tau_2ag = tau_ag - # transition dipoles (a.u.) - mu_ag = 1.0 - mu_2aa = 1.0 * mu_ag # HO approx (1.414) vs. uncorr. electron approx. (1.) - # TOs sets which time-ordered pathways to include (1-6 for TrEE) - # defaults to include all time-orderings included - TOs = range(7)[1:] - #--------------------------Recorded attributes-------------------------- - out_vars = ['dm_vector', 'out_group', 'rho_0', 'mu_ag', 'mu_2aa', - 'tau_ag', 'tau_aa', 'tau_2aa', 'tau_2ag', - 'wa_central', 'a_coupling', 'pc', 'propagator', - 'TOs'] - #--------------------------Methods-------------------------- - def __init__(self, **kwargs): - # inherit all class attributes unless kwargs has them; then use those - # values. if kwargs is not an Omega attribute, it gets ignored - # careful: don't redefine instance methods as class methods! - for key, value in kwargs.items(): - if key in Omega.__dict__.keys(): - setattr(self, key, value) - else: - print 'did not recognize attribute {0}. No assignment made'.format(key) - # with this set, initialize parameter vectors - self.w_0 = gen_w_0(self.wa_central, self.a_coupling) - self.Gamma = gen_Gamma_0(self.tau_ag, self.tau_aa, self.tau_2ag, - self.tau_2aa) - - def o(self, efields, t, wl): - # combine the two pulse permutations to produce one output array - E1, E2, E3 = efields[0:3] - - out1 = self._gen_matrix(E1, E2, E3, t, wl, w1first = True) - out2 = self._gen_matrix(E1, E2, E3, t, wl, w1first = False) - - return np.array([out1, out2], dtype=np.complex64) - - def _gen_matrix(self, E1, E2, E3, t, wl, w1first = True): - """ - creates the coupling array given the input e-fields values for a specific time, t - w1first selects whether w1 or w2p is the first interacting positive field - - Currently neglecting pathways where w2 and w3 require different frequencies - (all TRIVE space, or DOVE on diagonal) - - Matrix formulated such that dephasing/relaxation is accounted for - outside of the matrix - """ - wag = wl[1] - w2aa = wl[6] - - mu_ag = self.mu_ag - mu_2aa = self.mu_2aa - - if w1first==True: - first = E1 - second = E3 - else: - first = E3 - second = E1 - - O = np.zeros((len(t), len(wl), len(wl)), dtype=np.complex64) - # from gg1 - O[:,1,0] = mu_ag * first * rotor(-wag*t) - if w1first and 3 in self.TOs: - O[:,2,0] = -mu_ag * E2 * rotor(wag*t) - if not w1first and 5 in self.TOs: - O[:,2,0] = -mu_ag * E2 * rotor(wag*t) - # from ag1 - # to DQC - if w1first and 2 in self.TOs: - O[:,4,1] = mu_2aa * second * rotor(-w2aa*t) - if not w1first and 4 in self.TOs: - O[:,4,1] = mu_2aa * second * rotor(-w2aa*t) - # to pop - if w1first and 1 in self.TOs: - O[:,3,1] = -mu_ag * E2 * rotor(wag*t) - if not w1first and 6 in self.TOs: - O[:,3,1] = -mu_ag * E2 * rotor(wag*t) - # from ga - O[:,3,2] = mu_ag * first * rotor(-wag*t) - # from gg-aa - O[:,5,3] = -mu_ag * second * rotor(-wag*t) * mu_ag - # because of alpha and gamma pathways, count twice - O[:,5,3] -= mu_ag * second * rotor(-wag*t) * mu_ag - O[:,6,3] = mu_2aa * second * rotor(-w2aa*t) * mu_2aa - # from 2ag - O[:,6,4] = mu_ag * E2 * rotor(wag*t) * mu_2aa - O[:,5,4] = -mu_2aa * E2 * rotor(w2aa*t) * mu_ag - - # make complex according to Liouville Equation - O *= complex(0,0.5) - - # include coherence decay rates: - for i in range(O.shape[-1]): - O[:,i,i] = -self.Gamma[i] - - return O - - def ws(self, inhom_object): - """ - creates the correspondence of oscillator energies to the state vector - contains instructions for how energies change as subsets are changed - """ - z = inhom_object.zeta - - wg = 0.0 + 0*z - wa = z + self.wa_central - w2a = 2*wa - self.a_coupling - - w_ag = wa - wg - w_aa = wa - wa - w_gg = wg - wg - w_2ag = w2a - wg - w_2aa = w2a - wa - #array aggregates all frequencies to match state vectors - w = np.array( [w_gg, w_ag, -w_ag, w_aa, w_2ag, w_ag, w_2aa] ) - return w -- cgit v1.2.3