aboutsummaryrefslogtreecommitdiff
path: root/quantitative_ta
diff options
context:
space:
mode:
Diffstat (limited to 'quantitative_ta')
-rw-r--r--quantitative_ta/chapter.tex33
1 files changed, 18 insertions, 15 deletions
diff --git a/quantitative_ta/chapter.tex b/quantitative_ta/chapter.tex
index c8b594d..099b606 100644
--- a/quantitative_ta/chapter.tex
+++ b/quantitative_ta/chapter.tex
@@ -1,32 +1,35 @@
-\chapter{Quantitative transient absorbance} \label{cha:qta}
+\chapter{Quantitative differential absorbance} \label{cha:qta}
-\subsubsection{Quantitative TA}
+\clearpage
Transient absorbance (TA) spectroscopy is a self-heterodyned technique. %
Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
-detected (or explicitly heterodyned) experiments.
+detected (or explicitly heterodyned) experiments. %
-\begin{figure}
- \includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
- \label{fig:ta_and_tr_setup}
- \caption{CAPTION TODO}
-\end{figure}
+%\begin{figure}
+% \includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
+% \label{fig:ta_and_tr_setup}
+% \caption{CAPTION TODO}
+%\end{figure}
-\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. %
-Here I show measurement of both the reflected and transmitted probe beam \dots not important in
-opaque (pyrite) or non-reflective (quantum dot) samples \dots %
+%\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. %
+%Here I show measurement of both the reflected and transmitted probe beam \dots not important in
+%opaque (pyrite) or non-reflective (quantum dot) samples \dots %
Typically one attempts to calculate the change in absorbance $\Delta A$ \dots %
\begin{eqnarray}
\Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\
-&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
-&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\
+&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} +
+ I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\
+&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+
+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right)
+ \\
&=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\
-&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{eq:ta_complete}
+&=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{qta:eqn:ta_complete}
\end{eqnarray}
-\autoref{eq:ta_complete} simplifies beautifully if reflectivity is negligible \dots
+\autoref{qta:eqn:ta_complete} simplifies beautifully if reflectivity is negligible \dots
Now I define a variable for each experimental measurable:
\begin{center}