aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--PEDOT:PSS/agreement.pngbin0 -> 648749 bytes
-rw-r--r--PEDOT:PSS/chapter.tex246
-rw-r--r--PEDOT:PSS/parametric.pdfbin0 -> 15815 bytes
-rw-r--r--dissertation.cls133
-rw-r--r--dissertation.pdfbin3303728 -> 34266858 bytes
-rw-r--r--dissertation.syg3
-rw-r--r--dissertation.tex134
-rw-r--r--mixed_domain/chapter.tex100
-rw-r--r--spectroscopy/chapter.tex5
9 files changed, 376 insertions, 245 deletions
diff --git a/PEDOT:PSS/agreement.png b/PEDOT:PSS/agreement.png
new file mode 100644
index 0000000..1a7df33
--- /dev/null
+++ b/PEDOT:PSS/agreement.png
Binary files differ
diff --git a/PEDOT:PSS/chapter.tex b/PEDOT:PSS/chapter.tex
index 9138972..8bb1510 100644
--- a/PEDOT:PSS/chapter.tex
+++ b/PEDOT:PSS/chapter.tex
@@ -67,8 +67,11 @@ processing. %
\section{Transmittance and reflectance}
-\afterpage{
-\begin{figure}
+\autoref{fig:PEDOTPSS_linear} shows the transmission, reflectance, and extinction spectrum of the
+thin film used in this work. %
+
+\clearpage
+\begin{dfigure}
\centering
\includegraphics[width=0.5\linewidth]{"PEDOT:PSS/linear"}
\caption[PEDOT:PSS transmission and reflectance spectra.]{
@@ -77,27 +80,10 @@ processing. %
Extinction is $\log_{10}{\mathsf{(transmission)}}$. %
}
\label{fig:PEDOTPSS_linear}
-\end{figure}
-\clearpage}
-
-\autoref{fig:PEDOTPSS_linear} shows the transmission, reflectance, and extinction spectrum of the
-thin film used in this work. %
+\end{dfigure}
+\clearpage
-\section{Three-pulse echo spectroscopy}
-
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/mask"}
- \caption[PEDOT:PSS 3PE phase matching mask.]{
- Phase matching mask used in this experiment.
- Each successive ring subtends 1 degree, such that the excitation pulses are each angled one
- degree relative to the mask center.
- The two stars mark the two output poyntings detected in this work.
- }
- \label{fig:PEDOTPSS_mask}
-\end{figure}
-\clearpage}
+\section{Three-pulse echo spectroscopy} % --------------------------------------------------------
Two dimensional $\tau_{21}, \tau_{22^\prime}$ scans were taken for two phase matching
configurations: (1) $k_{\mathsf{out}} = k_1 - k_2 + k_{2^\prime}$ (3PE) and (2) $k_{\mathsf{out}} =
@@ -110,60 +96,208 @@ All data was modeled using numerical integration of the Liouville-von Numann equ
Continuously variable ND filters (THORLABS NDC-100C-4M, THORLABS NDL-10C-4) were used to ensure
that all three excitation pulse powers were equal within measurement error. %
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/raw"}
+\autoref{fig:PEDOTPSS_mask} diagrams the phase matching mask used in this set of experiments. %
+
+\begin{dfigure}
+ \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/mask"}
+ \caption[PEDOT:PSS 3PE phase matching mask.]{
+ Phase matching mask used in this experiment.
+ Each successive ring subtends 1 degree, such that the excitation pulses are each angled one
+ degree relative to the mask center.
+ The two stars mark the two output poyntings detected in this work.
+ }
+ \label{fig:PEDOTPSS_mask}
+\end{dfigure}
+
+\autoref{fig:PEDOTPSS_raw} shows the ten raw 2D delay-delay scans that comprise the primary dataset
+described in this section. %
+The rows correspond to the two phase matching conditions, as labeled. %
+
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/raw"}
\caption[PEDOT:PSS 3PE raw data.]{
CAPTION TODO
}
\label{fig:PEDOTPSS_raw}
-\end{figure}
-\clearpage}
+\end{dfigure}
+\subsection{Assignment of zero delay} % ----------------------------------------------------------
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/processed"}
+The absolute position of complete temporal overlap of the excitation pulses (zero delay) is a
+crucial step in determining the magnitude of th epeak shift and therefore the total rephasing
+ability of the material. %
+The strategy for assigning zero delay relies upon the intrinsic symmetry of the two-dimensional
+delay space. %
+\autoref{fig:PEDOTPSS_delay_space} labels the six time-orderings (TOs) of the three pulses that are
+possible with two delays. %
+The TO labeling scheme follow from a convention first defined my Meyer, Wright and Thompson.
+[CITE] %
+[CITE] first discussed how these TOs relate to traditional 3PE experiments. %
+Briefly, spectral peak shifts into the rephasing TOs \RomanNumeral{3} and \RomanNumeral{5} when
+inhomogeneous broadening creates a photon echo in the \RomanNumeral{3} and \RomanNumeral{5}
+rephasing pathways colored orange in \autoref{fig:PEDOTPSS_delay_space}. %
+For both phase-matching conditions, there are two separate 3PE peak shift traces (represented as
+black arrows in \autoref{fig:PEDOTPSS_delay_space}), yielding four different measurements of the
+photon echo. %
+Since both 3PE and 3PE* were measured using the same alignment on the same day, the zero delay
+position is identical for the four photon echo measurements. %
+We focus on this signature when assigning zero delay---zero is correct only when all four peak
+shifts agree. %
+Conceptually, this is the two-dimensional analogue to the traditional strategy of placing zero such
+that the two conjugate peak shifts (3PE and 3PE*) agree. [CITE] %
+
+We found that the 3PEPS traces agree best when the data in \autoref{fig:PEDOTPSS_raw} is offset by
+19 fs in $\tau_{22^\prime}$ and 4 fs in $\tau_{21}$. %
+\autoref{fig:PEDOTPSS_processed} shows the 3PEPS traces after correcting for the zero delay
+value. %
+The entire 3PEPS trace ($\tau$ vs $T$) is show for regions \RomanNumeral{1}, \RomanNumeral{3}
+(purple and light green traces) and \RomanNumeral{5}, \RomanNumeral{6} (yellow and light blue
+traces) for the [PHASE MATCHING EQUATIONS] phase matching conditions, respectively. %
+Peak-shift magnitudes were found with Gaussian figs on the intensity level, in accordance with
+3PEPS convention. [CITE]
+The bottom subplot of \autoref{fig:PEDOTPSS_overtraces} shows the agreement between the four traces
+for $T > 50$ fs where pulse-overlap effects become negligible. %
+These pulse-overlap effects cause the 3PEPS at small $T$ even without inhomogeneous broadening.
+[CITE] %
+At long $T$, the average static 3PEPS is 2.5 fs. %
+
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/delay space"}
+ \caption[PEDOT:PSS 3PE delay space.]{
+ CAPTION TODO
+ }
+ \label{fig:PEDOTPSS_delay_space}
+\end{dfigure}
+
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/processed"}
\caption[PEDOT:PSS 3PE processed data.]{
CAPTION TODO
}
\label{fig:PEDOTPSS_processed}
-\end{figure}
-\clearpage}
+\end{dfigure}
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/delay_space"}
- \caption[PEDOT:PSS 3PE delay space.]{
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/overtraces"}
+ \caption[PEDOT:PSS 3PE traces.]{
CAPTION TODO
}
- \label{fig:PEDOTPSS_delay_space}
-\end{figure}
-\clearpage}
+ \label{fig:PEDOTPSS_overtraces}
+\end{dfigure}
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/traces"}
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/traces"}
\caption[PEDOT:PSS 3PE traces.]{
CAPTION TODO
}
\label{fig:PEDOTPSS_traces}
-\end{figure}
-\clearpage}
+\end{dfigure}
-\afterpage{
-\begin{figure}
- \centering
- \includegraphics[width=0.5\linewidth]{"PEDOT:PSS/overtraces"}
+There is a deviation of the TO \RomanNumeral{1}-\RomanNumeral{3} 3PEPS* trace (green line) from the
+other traces. %
+It is attributed to a combination of excitation pulse distortions and line shape differences
+between OPA1 and OPA2 (see \autoref{fig:PEDOTPSS_linear}) and small errors in the zero delay
+correction. %
+\autoref{fig:PEDOTPSS_traces} shows what the four 3PEPS traces would llike like for different
+choices of zero-delay. %
+The inset numbers in each subplot denote the offset (from chosen zero) in each delay axis. %
+
+\subsubsection{Numerical model} % ----------------------------------------------------------------
+
+We simulated the 3PEPS response of PEDOT:PSS through numerical integration of the Liouville-von
+Neumann Equation. %
+Integration was performed on a homogeneous, three-level system with coherent dynamics described by
+
+\begin{equation}
+ \frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_2^*},
+\end{equation}
+
+where $T_2$, $T_1$ and $T_2^*$ are the net dephasing, population relaxation, and pure dephasing
+rates, respectively. %
+A three-level system was used because a two-level system cannot explain the population relaxation
+observed at long populations times, $T$. %
+This slow delcay may be the same as the slowly decaying optical nonlinearities in PEDOT:PSS.
+[CITE] %
+Inhomogeneity was incorporated by convolving the homogeneous repsonse with a Gaussian distribution
+function of width $\Delta_{\mathsf{inhom}}$ and allowing the resultant polarization to interfere on
+the amplitude level. %
+This strategy captures rephasing peak shifts and ensemble dephasing. %
+
+It is difficult to determine the coherence dephasing and the inhomogeneous broadening using 3PE if
+both factors are large. %
+To extract $T_2^*$ and $\Delta_{\mathsf{inhom}}$, we focused on two key components of the dataset,
+coherence duration and peak shift at large $T$. %
+Since dephasing is very fast in PEDOT:PSS, we cannot directly respove an exponential free induction
+decay (FID). %
+Instead, our model focuses on the FWHM of the $\tau$ trace to determine the coherence duration. %
+At $T > 50$ fs, the transient has a FWHM of $\sim$ 80 fs (intensity level). %
+For comparison, our instrumental response is estimated to be 70-90 fs, depending on the exact value
+of our puse duration $\Delta_t$ (35-45 fs FWHM, intensity level). %
+An experimental peak shift of 2.5 fs was extracted using the strategy described above. %
+Taken together, it is clear that both pure dephasing and ensemble dephasing influence FWHM and peak
+shift so it is important to find valuse of $T_2^*$ and $\Delta_{\mathsf{inhom}}$ that uniquely
+constrain the measured response. %
+
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/parametric"}
\caption[PEDOT:PSS 3PE traces.]{
CAPTION TODO
}
- \label{fig:PEDOTPSS_overtraces}
-\end{figure}
-\clearpage}
+ \label{fig:PEDOTPSS_parametric}
+\end{dfigure}
+
+We simulated the $\tau$ trance for a variety of $\Delta_{\mathsf{inhom}}$ and $T_2$ values. %
+The results for $\Delta_t = 40$ fs are summarized in \autoref{fig:PEDOTPSS_parametric}. %
+The lines of constant $T_2$ span from $\Delta_{\mathsf{inhom}} = 0$ (green left ends of curves) to
+the limit $\Delta_{\mathsf{inhom}} \rightarrow \infty$ (blue right ends of curves). %
+The lines of constant $T_2$ demonstrate that ensemble dephasing reduces the transient duration and
+introduces a peak shift. %
+The influence of inhomogeneity on the observables vanishes as $T_2 \rightarrow \infty$. %
+
+We preformed simulations analogus to those in \autoref{fig:PEDOTPSS_parametric} for pulse durations
+longer and smaller than $\Delta_t = 40$ fs. %
+Longer pulse durations create solutions that do not intersect our experimental point (see
+right-most subplot of \autoref{fig:PEDOTPSS_parametric}), but shorter pulse durations do. %
+[TABLE] summarizes the coherence dephasing time and inomogeneous broadening values that best
+matches the experimental FWHM and inhomogeneous broadening value for $\Delta_t = 35, 40$ and 45
+fs. %
+Clearly, there is no upper limit that can provide an upper limit for the inhomogeneous
+broadening. %
+
+\begin{dtable}
+ \begin{tabular}{ c | c c c }
+ $\Delta_t$ (fs) & $T_2$ (fs) & $\hbar T_2^{-1}$ (meV) & $\Delta_{\mathsf{inhom}}$ (meV) \\ \hline
+ 45 & --- & --- & --- \\
+ 40 & 10 & 66 & $\infty$ \\
+ \end{tabular}
+ \caption[]{
+ CAPTION TODO
+ }
+ \label{tab:PEDOTPSS_table}
+\end{dtable}
+
+\begin{dfigure}
+ \includegraphics[width=\linewidth]{"PEDOT:PSS/agreement"}
+ \caption[PEDOT:PSS 3PE traces.]{
+ CAPTION TODO
+ }
+ \label{fig:PEDOTPSS_agreement}
+\end{dfigure}
+
+Our model system does ans excellent job of reproducing the entire 2D transient within measurement
+error (\autoref{fig:PEDOTPSS_agreement}). %
+The most dramatic disagreement is in the upper right, where the experiment decays much slower than
+the simulation. %
+Our system description does not account for signal contributions in TOs \RomanNumeral{2} and
+\RomanNumeral{4}, where double quantum coherence resonances are important. %
+In additon, excitation pulse shapes may cause such distortions. %
+Regardless, these contributions do not affect our analysis. %
+
+Extremely fast (single fs) carrier scattering time constants have also been observed for PEDOT-base
+conductive films. [CITES]
+
+\section{Frequency-domain transient grating spectroscopy} % --------------------------------------
+
+This section describes preliminary, unpublished work accomplished on PEDOT:PSS. %
+
-\section{Frequency-domain transient grating spectroscopy} \ No newline at end of file
diff --git a/PEDOT:PSS/parametric.pdf b/PEDOT:PSS/parametric.pdf
new file mode 100644
index 0000000..a3b50fa
--- /dev/null
+++ b/PEDOT:PSS/parametric.pdf
Binary files differ
diff --git a/dissertation.cls b/dissertation.cls
new file mode 100644
index 0000000..2d2ebc8
--- /dev/null
+++ b/dissertation.cls
@@ -0,0 +1,133 @@
+\ProvidesClass{dissertation}
+
+% --- basic ---------------------------------------------------------------------------------------
+
+% required: 10 to 12 point font
+
+\LoadClass[11pt, twoside, openright]{report}
+\RequirePackage[letterpaper, margin=1in]{geometry} % 1 inch margins required
+\RequirePackage{setspace}
+\RequirePackage{afterpage}
+\RequirePackage{color}
+\RequirePackage{array}
+
+% --- headers -------------------------------------------------------------------------------------
+
+% required: page number in upper right, nothing else
+
+\RequirePackage{fancyhdr}
+\fancypagestyle{plain}{
+ \fancyhf{}
+ \fancyhead[R]{\thepage}
+ \fancyfoot{}
+ \renewcommand{\headrulewidth}{0pt}
+ \renewcommand{\footrulewidth}{0pt}
+}
+\pagestyle{plain}{\rhead{\thepage}}
+
+% --- text ----------------------------------------------------------------------------------------
+
+% text
+\RequirePackage[utf8]{inputenc}
+\setlength\parindent{0pt}
+\setlength{\parskip}{1em}
+\RequirePackage{enumitem}
+\setlist{noitemsep, topsep=0pt, parsep=0pt, partopsep=0pt}
+\renewcommand{\familydefault}{\sfdefault}
+
+\newcommand{\RomanNumeral}[1]{\textrm{\uppercase\expandafter{\romannumeral #1\relax}}}
+\RequirePackage{etoolbox}
+\AtBeginEnvironment{verse}{\singlespacing}
+
+% --- code environment ----------------------------------------------------------------------------
+
+% \RequirePackage{minted}
+\definecolor{light-gray}{gray}{0.90}
+\newcommand{\code}[1]{\colorbox{light-gray}{\texttt{#1}}}
+
+% --- tables --------------------------------------------------------------------------------------
+
+\newenvironment{dtable}
+ {
+ \clearpage
+ \begin{table}
+ \centering
+ }
+ {
+ \end{table}
+ \clearpage}
+
+% --- graphics ------------------------------------------------------------------------------------
+
+\RequirePackage{graphics}
+\RequirePackage{graphicx}
+\RequirePackage{epsfig}
+\RequirePackage{epstopdf}
+\RequirePackage{etoc}
+\RequirePackage{tikz}
+
+\newenvironment{dfigure}
+ {
+ \clearpage
+ \begin{figure}
+ \centering
+ }
+ {
+ \end{figure}
+ \clearpage}
+
+% --- math ----------------------------------------------------------------------------------------
+
+\RequirePackage{amssymb}
+\RequirePackage{amsmath}
+\RequirePackage[cm]{sfmath}
+\RequirePackage{bm} % bold mathtype
+\DeclareMathOperator{\me}{e}
+
+% --- misc / ? ------------------------------------------------------------------------------------
+
+\RequirePackage[nottoc]{tocbibind}
+\RequirePackage{fixltx2e}
+\RequirePackage{pdfpages}
+\RequirePackage[utf8]{inputenc}
+
+% --- hyperref ------------------------------------------------------------------------------------
+
+\RequirePackage[colorlinks=true, linkcolor=black, urlcolor=blue, citecolor=black,
+anchorcolor=black]{hyperref}
+\RequirePackage[all]{hypcap} % helps hyperref work properly
+
+% --- bibliography --------------------------------------------------------------------------------
+
+\RequirePackage[backend=biber, natbib=true, sorting=none, maxbibnames=99]{biblatex}
+\bibliography{bibliography}
+
+% --- glossary ------------------------------------------------------------------------------------
+
+\RequirePackage[acronym, nopostdot, nogroupskip]{glossaries}
+\newcommand{\comma}{,\penalty \exhyphenpenalty}
+\newlength\glsnamewidth
+\setlength{\glsnamewidth}{0.3\hsize}
+\setlength{\glsdescwidth}{1\hsize}
+\newglossarystyle{myglossarystyle}{
+ \setglossarystyle{super}
+ \renewenvironment{theglossary}{
+ \tablehead{}
+ \tabletail{}
+ \begin{supertabular}{p{\glsnamewidth}p{\glsdescwidth}}}{\end{supertabular}}
+ \renewcommand{\glossentry}[2]{
+ \raggedleft
+ \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &
+ \glossentrydesc{##1}\glspostdescription\space ##2\tabularnewline}}
+\renewcommand{\arraystretch}{1}
+\setglossarystyle{myglossarystyle}
+\newglossary[slg]{symbolslist}{syi}{syg}{Symbols}
+\makeglossaries
+\include{glossary}
+
+\RequirePackage{tocloft}
+
+\setlength\cftparskip{0pt}
+\setlength\cftbeforechapskip{-5pt}
+\setlength\cftbeforesecskip{-7pt}
+\setlength\cftbeforesubsecskip{-10pt} \ No newline at end of file
diff --git a/dissertation.pdf b/dissertation.pdf
index 7cfeb9a..c66f292 100644
--- a/dissertation.pdf
+++ b/dissertation.pdf
Binary files differ
diff --git a/dissertation.syg b/dissertation.syg
index e69de29..fc6ad1e 100644
--- a/dissertation.syg
+++ b/dissertation.syg
@@ -0,0 +1,3 @@
+\glossaryentry{\ensuremath {N}?\glossentry{N}|setentrycounter[]{page}\glsnumberformat}{8}
+\glossaryentry{\ensuremath {N}?\glossentry{N}|setentrycounter[]{page}\glsnumberformat}{8}
+\glossaryentry{\ensuremath {\omega }?\glossentry{omega}|setentrycounter[]{page}\glsnumberformat}{82}
diff --git a/dissertation.tex b/dissertation.tex
index 4bc47a2..8c16976 100644
--- a/dissertation.tex
+++ b/dissertation.tex
@@ -1,113 +1,11 @@
% https://grad.wisc.edu/currentstudents/doctoralguide/
% TODO: cool quote: God made the bulk; surfaces were invented by the devil. https://en.wikiquote.org/wiki/Wolfgang_Pauli
-% document
-\documentclass[11 pt, twoside, openright]{report} % 10 to 12 pt font required
-\usepackage[letterpaper, margin=1in]{geometry} % 1 inch margins required
-\usepackage{setspace}
-\usepackage{afterpage}
-\usepackage{color}
-\usepackage{array}
-
-% headers (required: page number in upper right, nothing else)
-\usepackage{fancyhdr}
-\fancypagestyle{plain}{
- \fancyhf{}
- \fancyhead[R]{\thepage}
- \fancyfoot{}
- \renewcommand{\headrulewidth}{0pt}
- \renewcommand{\footrulewidth}{0pt}
-}
-\pagestyle{plain}{\rhead{\thepage}}
-
-% ensure that floats appear in the section they are defined in (http://tex.stackexchange.com/a/235312)
-\usepackage{placeins}
-\let\Oldsection\section
-\renewcommand{\section}{\FloatBarrier\Oldsection}
-\let\Oldsubsection\subsection
-\renewcommand{\subsection}{\FloatBarrier\Oldsubsection}
-\let\Oldsubsubsection\subsubsection
-\renewcommand{\subsubsection}{\FloatBarrier\Oldsubsubsection}
-
-% text
-\usepackage[utf8]{inputenc}
-\setlength\parindent{0pt}
-\setlength{\parskip}{1em}
-\usepackage{enumitem}
-\setlist{noitemsep, topsep=0pt, parsep=0pt, partopsep=0pt}
-\renewcommand{\familydefault}{\sfdefault}
-\newcommand{\RomanNumeral}[1]{\textrm{\uppercase\expandafter{\romannumeral #1\relax}}}
-\usepackage{etoolbox}
-\usepackage{tabularx}
-\AtBeginEnvironment{verse}{\singlespacing}
-\AtBeginEnvironment{tabular}{\singlespacing}
-
-% code highlighting
-%\usepackage{minted}
-\definecolor{light-gray}{gray}{0.90}
-\newcommand{\code}[1]{\colorbox{light-gray}{\texttt{#1}}}
-
-% graphics
-\usepackage{graphics}
-\usepackage{graphicx}
-\usepackage{epsfig}
-\usepackage{epstopdf}
-\usepackage{etoc}
-\usepackage{tikz}
-
-% math
-\usepackage{amssymb}
-\usepackage{amsmath}
-\usepackage[cm]{sfmath}
-\usepackage{bm} % bold mathtype
-\DeclareMathOperator{\me}{e}
-
-% misc / ?
-\usepackage[nottoc]{tocbibind}
-\usepackage{fixltx2e}
-\usepackage{pdfpages}
-\usepackage[utf8]{inputenc}
-
-% hyperref
-\usepackage[colorlinks=true, linkcolor=black, urlcolor=blue, citecolor=black, anchorcolor=black]{hyperref}
-\usepackage[all]{hypcap} % helps hyperref work properly
-
-% bibliography
-\usepackage[backend=biber, natbib=true, sorting=none, maxbibnames=99]{biblatex}
-\bibliography{bibliography}
-
-% glossary
-\usepackage[acronym, nopostdot, nogroupskip]{glossaries}
-\newcommand{\comma}{,\penalty \exhyphenpenalty}
-\newlength\glsnamewidth
-\setlength{\glsnamewidth}{0.3\hsize}
-\setlength{\glsdescwidth}{1\hsize}
-\newglossarystyle{myglossarystyle}{
- \setglossarystyle{super}
- \renewenvironment{theglossary}{
- \tablehead{}
- \tabletail{}
- \begin{supertabular}{p{\glsnamewidth}p{\glsdescwidth}}}{\end{supertabular}}
- \renewcommand{\glossentry}[2]{
- \raggedleft
- \glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &
- \glossentrydesc{##1}\glspostdescription\space ##2\tabularnewline}}
-\renewcommand{\arraystretch}{1}
-\setglossarystyle{myglossarystyle}
-\newglossary[slg]{symbolslist}{syi}{syg}{Symbols}
-\makeglossaries
-\include{glossary}
-
-\usepackage{tocloft}
-
-\setlength\cftparskip{0pt}
-\setlength\cftbeforechapskip{-5pt}
-\setlength\cftbeforesecskip{-7pt}
-\setlength\cftbeforesubsecskip{-10pt}
+\documentclass{dissertation}
\begin{document}
-% pre ---------------------------------------------------------------------------------------------
+% --- preamble ------------------------------------------------------------------------------------
\begin{centering}
\thispagestyle{empty}
@@ -192,30 +90,30 @@ This dissertation is approved by the following members of the Final Oral Committ
\include{introduction/chapter}
\part{Background}
-%\include{spectroscopy/chapter}
-%\include{materials/chapter}
-%\include{mixed_domain/chapter}
+\include{spectroscopy/chapter}
+\include{materials/chapter}
+\include{mixed_domain/chapter}
\part{Instrumental Development}
-%\include{software/chapter}
-%\include{instrument/chapter}
+\include{software/chapter}
+\include{instrument/chapter}
\part{Applications}
-%\include{PbSe/chapter}
-%\include{MX2/chapter}
+\include{PbSe/chapter}
+\include{MX2/chapter}
\include{PEDOT:PSS/chapter}
-%\include{pyrite/chapter}
-%\include{BiVO4/chapter}
+\include{pyrite/chapter}
+\include{BiVO4/chapter}
% appendix -----------------------------------------------------------------------------------------
\part{Appendix}
\begin{appendix}
-%\include{public/chapter}
-%\include{procedures/chapter}
-%\include{hardware/chapter}
-%\include{errata/chapter}
-%\include{colophon/chapter}
+\include{public/chapter}
+\include{procedures/chapter}
+\include{hardware/chapter}
+\include{errata/chapter}
+\include{colophon/chapter}
\end{appendix}
% post --------------------------------------------------------------------------------------------
diff --git a/mixed_domain/chapter.tex b/mixed_domain/chapter.tex
index 308146b..7f8a8b4 100644
--- a/mixed_domain/chapter.tex
+++ b/mixed_domain/chapter.tex
@@ -137,9 +137,7 @@ from these measurement artifacts. %
\section{Theory}
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=0.5\linewidth]{"mixed_domain/WMELs"}
\caption[Sixteen triply-resonant Liouville pathways.]{
The sixteen triply-resonant Liouville pathways for the third-order response of the system used
@@ -149,8 +147,7 @@ from these measurement artifacts. %
are yellow, excitations with $\omega_2=\omega_{2'}$ are purple, and the final emission is gray.
}
\label{fig:WMELs}
-\end{figure}
-\clearpage}
+\end{dfigure}
We consider a simple three-level system (states $n=0,1,2$) that highlights the multidimensional
line shape changes resulting from choices of the relative dephasing and detuning of the system and
@@ -234,8 +231,7 @@ this paper. %
The steady state and impulsive limits of Equation \ref{eq:rho_f_int} are discussed in Appendix
\ref{sec:cw_imp}. %
-\afterpage{
-\begin{figure}
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/simulation overview"}
\caption[Overview of the MR-CMDS simulation.]{
Overview of the MR-CMDS simulation.
@@ -253,8 +249,7 @@ The steady state and impulsive limits of Equation \ref{eq:rho_f_int} are discuss
help introduce our delay convention.
}
\label{fig:overview}
-\end{figure}
-\clearpage}
+\end{dfigure}
Fig. \ref{fig:overview} gives an overview of the simulations done in this work. %
Fig. \ref{fig:overview}a shows an excitation pulse (gray-shaded) and examples of a coherent
@@ -491,8 +486,7 @@ The driven limit holds for large detunings, regardless of delay. %
\subsection{Convolution Technique for Inhomogeneous Broadening}\label{sec:convolution}
-\afterpage{
-\begin{figure}
+\begin{dfigure}
\includegraphics[width=\linewidth]{mixed_domain/convolve}
\caption[Convolution overview.]
{Overview of the convolution.
@@ -501,8 +495,7 @@ The driven limit holds for large detunings, regardless of delay. %
(c) The resulting ensemble line shape computed from the convolution.
The thick black line represents the FWHM of the distribution function.}
\label{fig:convolution}
-\end{figure}
-\clearpage}
+\end{dfigure}
Here we describe how to transform the data of a single reference oscillator signal to that of an
inhomogeneous distribution. %
@@ -588,8 +581,7 @@ pulse delay times, and inhomogeneous broadening. %
\subsection{Evolution of single coherence}\label{sec:evolution_SQC}
-\afterpage{
-\begin{figure}
+\begin{dfigure}
\centering
\includegraphics[width=0.5\linewidth]{"mixed_domain/fid vs dpr"}
\caption[Relative importance of FID and driven response for a single quantum coherence.]{
@@ -601,8 +593,7 @@ pulse delay times, and inhomogeneous broadening. %
slightly detuned (relative detuning, $\Omega_{fx}/\Delta_{\omega}=0.1$).
}
\label{fig:fid_dpr}
-\end{figure}
-\clearpage}
+\end{dfigure}
It is illustrative to first consider the evolution of single coherences, $\rho_0 \xrightarrow{x}
\rho_1$, under various excitation conditions. %
@@ -639,8 +630,7 @@ We note that our choices of $\Gamma_{10}\Delta_t=2.0, 1.0,$ and $0.5$ give coher
mainly driven, roughly equal driven and FID parts, and mainly FID components, respectively. %
FID character is difficult to isolate when $\Gamma_{10}\Delta_t=2.0$. %
-\afterpage{
-\begin{figure}
+\begin{dfigure}
\centering
\includegraphics[width=0.5\linewidth]{"mixed_domain/fid vs detuning"}
\caption[Pulsed excitation of a single quantum coherence and its dependance on pulse detuning.]{
@@ -661,8 +651,7 @@ FID character is difficult to isolate when $\Gamma_{10}\Delta_t=2.0$. %
In all plots, the gray line is the electric field amplitude.
}
\label{fig:fid_detuning}
-\end{figure}
-\clearpage}
+\end{dfigure}
Fig. \ref{fig:fid_detuning}a shows the temporal evolution of $\rho_1$ at several values of $\Omega_{1x}/\Delta_{\omega}$ with $\Gamma_{10}\Delta_t=1$.\footnote{
See Supplementary Fig. S3 for a Fourier domain representation of Fig. \ref{fig:fid_detuning}a.
@@ -729,8 +718,7 @@ $\Gamma_{10}\Delta_t=1$. %
\subsection{Evolution of single Liouville pathway}
-\afterpage{
-\begin{figure}
+\begin{dfigure}
\centering
\includegraphics[width=\linewidth]{"mixed_domain/pw1 lineshapes"}
\caption[2D frequency response of a single Liouville pathway at different delay values.]{
@@ -743,8 +731,7 @@ $\Gamma_{10}\Delta_t=1$. %
compare 2D spectrum frame color with dot color on 2D delay plot.
}
\label{fig:pw1}
-\end{figure}
-\clearpage}
+\end{dfigure}
We now consider the multidimensional response of a single Liouville pathway involving three pulse
interactions. %
@@ -783,11 +770,10 @@ Since $E_1$ is not the last pulse in pathway I$\gamma$, the tracking monochromat
See Supplementary Fig. S5 for a representation of Fig. 5 simulated without monochromator frequency filtering ($M(\omega-\omega_1)=1$ for Equation \ref{eq:S_tot}).
}
-\begin{table*}
- \centering
+\begin{dtable}
\caption{\label{tab:table2} Conditions for peak intensity at different pulse delays for pathway
I$\gamma$.}
- \begin{tabularx}{0.7\linewidth}{c c | X X X X}
+ \begin{tabular}{c c | c c c c}
\multicolumn{2}{c}{Delay} & \multicolumn{4}{|c}{Approximate Resonance Conditions} \\
$\tau_{21}/\Delta_t$ & $\tau_{22^\prime}/\Delta_t$ & $\rho_0\xrightarrow{1}\rho_1$ &
$\rho_1\xrightarrow{2}\rho_2$ & $\rho_2\xrightarrow{2^\prime}\rho_3$ & $\rho_3\rightarrow$
@@ -800,8 +786,8 @@ Since $E_1$ is not the last pulse in pathway I$\gamma$, the tracking monochromat
$\omega_1=\omega_{10}$ \\
2.4 & -2.4 & $\omega_1=\omega_{10}$ & $\omega_2=\omega_{10}$ & $\omega_2=\omega_{10}$ &
$\omega_1=\omega_2$ \\
- \end{tabularx}
-\end{table*}
+ \end{tabular}
+\end{dtable}
When the pulses are all overlapped ($\tau_{21}=\tau_{22^\prime}=0$, lower right, orange), all
transitions in the Liouville pathway are simultaneously driven by the incident fields. %
@@ -875,9 +861,7 @@ in unexpected ways. %
\subsection{Temporal pathway discrimination}
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/delay space ratios"}
\caption[2D delay response for different relative dephasing rates.]{
Comparison of the 2D delay response for different relative dephasing rates (labeled atop each
@@ -892,8 +876,7 @@ in unexpected ways. %
(purple), and III or I (teal).
}
\label{fig:delay_purity}
-\end{figure}
-\clearpage}
+\end{dfigure}
In the last section we showed how a single pathway's spectra can evolve with delay due to pulse
effects and time gating. %
@@ -943,9 +926,7 @@ vanishing signal intensities; the contour of $P=0.99$ across our systems highlig
\subsection{Multidimensional line shape dependence on pulse delay time}
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/spectral evolution"}
\caption[Evolution of the 2D frequency response.]{
Evolution of the 2D frequency response as a function of $\tau_{21}$ (labeled inset) and the
@@ -960,8 +941,7 @@ vanishing signal intensities; the contour of $P=0.99$ across our systems highlig
$\tau_{22^\prime}=0$.
}
\label{fig:hom_2d_spectra}
-\end{figure}
-\clearpage}
+\end{dfigure}
In the previous sections we showed how pathway spectra and weights evolve with delay. %
This section ties the two concepts together by exploring the evolution of the spectral line shape
@@ -1036,17 +1016,14 @@ only the absorptive line shape along $\omega_2$. %
This narrowing, however, is unresolvable when the pulse bandwidth becomes broader than that of the
resonance, which gives rise to a vertically elongated signal when $\Gamma_{10}\Delta_t=0.5$. %
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/wigners"}
\caption[Wigners.]{
Transient ($\omega_1$) line shapes and their dependence on $\omega_2$ frequency.
The relative dephasing rate is $\Gamma_{10}\Delta_t=1$ and $\tau_{22^\prime}=0$.
For each plot, the corresponding $\omega_2$ value is shown as a light gray vertical line.}
\label{fig:wigners}
-\end{figure}
-\clearpage}
+\end{dfigure}
It is also common to represent data as ``Wigner plots,'' where one axis is delay and the other is
frequency.\cite{Kohler2014, Aubock2012,Czech2015,Pakoulev2007} %
@@ -1063,12 +1040,9 @@ This representation also highlights the asymmetric broadening of the $\omega_1$
pulse overlap when $\omega_2$ becomes non-resonant. %
Again, these features can resemble spectral diffusion even though our system is homogeneous. %
-\subsection{Inhomogeneous broadening}
+\subsection{Inhomogeneous broadening} \label{sec:res_inhom} % ------------------------------------
-\afterpage{
-\label{sec:res_inhom}
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=0.5\linewidth]{"mixed_domain/inhom delay space ratios"}
\caption[2D delay response with inhomogeneity.]{
2D delay response for $\Gamma_{10}\Delta_t=1$ with sample inhomogeneity. %
@@ -1083,8 +1057,7 @@ Again, these features can resemble spectral diffusion even though our system is
(purple), III (teal, dashed), and I (teal, solid). %
}
\label{fig:delay_inhom}
-\end{figure}
-\clearpage}
+\end{dfigure}
With the homogeneous system characterized, we can now consider the effect of inhomogeneity. %
For inhomogeneous systems, time-orderings III and V are enhanced because their final coherence will
@@ -1138,9 +1111,7 @@ distortion has not been investigated previously. %
Peak-shifting due to pulse overlap is less important when $\omega_1\neq\omega_2$ because
time-ordering III is decoupled by detuning. %
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/inhom spectral evolution"}
\caption[Spectral evolution of an inhomogenious system.]{
Same as Fig. \ref{fig:hom_2d_spectra}, but each system has inhomogeneity
@@ -1157,8 +1128,7 @@ time-ordering III is decoupled by detuning. %
time-orderings V and VI unequal.
}
\label{fig:inhom_2d_spectra}
-\end{figure}
-\clearpage}
+\end{dfigure}
In frequency space, spectral elongation along the diagonal is the signature of inhomogeneous
broadening. %
@@ -1241,9 +1211,7 @@ Only time-orderings V and VI are relevant. %
The intermediate population resonance is still impulsive but it depends on
$\omega_{2^\prime}-\omega_2$ which is not explored in our 2D frequency space. %
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=\linewidth]{"mixed_domain/steady state"}
\caption[Conditional validity of the driven limit.]{
Comparing approximate expressions of the 2D frequency response with the directly integrated
@@ -1256,14 +1224,11 @@ $\omega_{2^\prime}-\omega_2$ which is not explored in our 2D frequency space. %
Third column: The directly integrated response. %
}
\label{fig:steady_state}
-\end{figure}
-\clearpage}
+\end{dfigure}
-\subsection{Extracting true material correlation}
+\subsection{Extracting true material correlation} % ----------------------------------------------
-\afterpage{
-\begin{figure}
- \centering
+\begin{dfigure}
\includegraphics[width=0.5\linewidth]{"mixed_domain/metrics"}
\caption[Metrics of correlation.]{
Temporal (3PEPS) and spectral (ellipticity) metrics of correlation and their relation to the
@@ -1280,8 +1245,7 @@ $\omega_{2^\prime}-\omega_2$ which is not explored in our 2D frequency space. %
area are connected). %
}
\label{fig:metrics}
-\end{figure}
-\clearpage}
+\end{dfigure}
We have shown that pulse effects mimic the qualitative signatures of inhomogeneity. %
Here we address how one can extract true system inhomogeneity in light of these effects. %
diff --git a/spectroscopy/chapter.tex b/spectroscopy/chapter.tex
index 3aa7ffc..21a233d 100644
--- a/spectroscopy/chapter.tex
+++ b/spectroscopy/chapter.tex
@@ -162,12 +162,11 @@ Transient absorbance (TA) spectroscopy is a self-heterodyned technique. %
Through chopping you can measure nonlinearities quantitatively much easier than with homodyne
detected (or explicitly heterodyned) experiments.
-\begin{figure}[p!]
- \centering
+\begin{dfigure}
\includegraphics[width=\textwidth]{"spectroscopy/TA setup"}
\label{fig:ta_and_tr_setup}
\caption{CAPTION TODO}
-\end{figure}
+\end{dfigure}
\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. %
Here I show measurement of both the reflected and transmitted probe beam \dots not important in