\chapter{Quantitative differential absorbance} \label{cha:qta} \clearpage Transient absorbance (TA) spectroscopy is a self-heterodyned technique. % Through chopping you can measure nonlinearities quantitatively much easier than with homodyne detected (or explicitly heterodyned) experiments. % %\begin{figure} % \includegraphics[width=\textwidth]{"spectroscopy/TA setup"} % \label{fig:ta_and_tr_setup} % \caption{CAPTION TODO} %\end{figure} %\autoref{fig:ta_and_tr_setup} diagrams the TA measurement for a generic sample. % %Here I show measurement of both the reflected and transmitted probe beam \dots not important in %opaque (pyrite) or non-reflective (quantum dot) samples \dots % Typically one attempts to calculate the change in absorbance $\Delta A$ \dots % \begin{eqnarray} \Delta A &=& A_{\mathrm{on}} - A_{\mathrm{off}} \\ &=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}} + I_{\Delta\mathrm{R}}}{I_0}\right) + \log\left(\frac{I_\mathrm{T}+I_\mathrm{R}}{I_0}\right) \\ &=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_0)\right)+\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R})-\log_{10}(I_0)\right) \\ &=& -\left(\log_{10}(I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}})-\log_{10}(I_\mathrm{T}+I_\mathrm{R})\right) \\ &=& -\log_{10}\left(\frac{I_\mathrm{T}+I_\mathrm{R}+I_{\Delta\mathrm{T}}+ I_{\Delta\mathrm{R}}}{I_\mathrm{T}+I_\mathrm{R}}\right) \label{qta:eqn:ta_complete} \end{eqnarray} \autoref{qta:eqn:ta_complete} simplifies beautifully if reflectivity is negligible \dots Now I define a variable for each experimental measurable: \begin{center} \begin{tabular}{c | l} $V_\mathrm{T}$ & voltage recorded from transmitted beam, without pump \\ $V_\mathrm{R}$ & voltage recorded from reflected beam, without pump \\ $V_{\Delta\mathrm{T}}$ & change in voltage recorded from transmitted beam due to pump \\ $V_{\Delta\mathrm{R}}$ & change in voltage recorded from reflected beam due to pump \end{tabular} \end{center} We will need to calibrate using a sample with a known transmisivity and reflectivity constant: \begin{center} \begin{tabular}{c | l} $V_{\mathrm{T},\,\mathrm{ref}}$ & voltage recorded from transmitted beam, without pump \\ $V_{\mathrm{R},\,\mathrm{ref}}$ & voltage recorded from reflected beam, without pump \\ $\mathcal{T}_\mathrm{ref}$ & transmissivity \\ $\mathcal{R}_\mathrm{ref}$ & reflectivity \end{tabular} \end{center} Define two new proportionality constants... \begin{eqnarray} C_\mathrm{T} &\equiv& \frac{\mathcal{T}}{V_\mathrm{T}} \\ C_\mathrm{R} &\equiv& \frac{\mathcal{R}}{V_\mathrm{R}} \end{eqnarray} These are explicitly calibrated (as a function of probe color) prior to the experiment using the calibration sample. % Given the eight experimental measurables ($V_\mathrm{T}$, $V_\mathrm{R}$, $V_{\Delta\mathrm{T}}$, $V_{\Delta\mathrm{R}}$, $V_{\mathrm{T},\,\mathrm{ref}}$, $V_{\mathrm{R},\,\mathrm{ref}}$, $\mathcal{T}_\mathrm{ref}$, $\mathcal{R}_\mathrm{ref}$) I can express all of the intensities in \autoref{qta:eqn:ta_complete} in terms of $I_0$. % \begin{eqnarray} C_\mathrm{T} &=& \frac{\mathcal{T}_\mathrm{ref}}{V_{\mathrm{T},\,\mathrm{ref}}} \\ C_\mathrm{R} &=& \frac{\mathcal{R}_\mathrm{ref}}{V_{\mathrm{R},\,\mathrm{ref}}} \\ I_\mathrm{T} &=& I_0 C_\mathrm{T} V_\mathrm{T} \\ I_\mathrm{R} &=& I_0 C_\mathrm{R} V_\mathrm{R} \\ I_{\Delta\mathrm{T}} &=& I_0 C_\mathrm{T} V_{\Delta\mathrm{T}} \\ I_{\Delta\mathrm{R}} &=& I_0 C_\mathrm{R} V_{\Delta\mathrm{R}} \end{eqnarray} Wonderfully, the $I_0$ cancels when plugged back into \autoref{qta:eqn:ta_complete}, leaving a final expression for $\Delta A$ that only depends on my eight measurables. % \begin{equation} \Delta A = - \log_{10} \left(\frac{C_\mathrm{T}(V_\mathrm{T} + V_{\Delta\mathrm{T}}) + C_\mathrm{R}(V_\mathrm{R} + V_{\Delta\mathrm{R}})}{C_\mathrm{T} V_\mathrm{T} + C_\mathrm{R} V_\mathrm{R}}\right) \end{equation}