Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Conclusion

Supplement

Development of Frequency-Domain Multidimensional Spectroscopy –Beyond Two Dimensions–

Blaise Thompson

University of Wisconsin-Madison

2018-04-23

Introduction to CMDS

 $\vec{k_{
m sig}} = \vec{k_a} - \vec{k_b} + \vec{k_c}$

Figure courtesy of Schuyler Kain

Multidimensional

Blaise Thompson

Development of Frequency-Domain Multidimensional Spectroscopy

Blaise Thompson

Tunability

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Supplement

Introduction to CMDS: microscopic picture

Blaise Thompson

Multidimensional

Tunability

requisition

Measurement enhancements

Experimental geometry...

 $\vec{k}_{a} - \vec{k}_{a} + \vec{k}_{b} + \vec{k}_{a} + \vec{k}_{d}$

 $\blacktriangleright \vec{k_a} - \vec{k_b} + \vec{k_c}$

 $\blacktriangleright \vec{k_a} + \vec{k_b} + \vec{k_c}$

Processing Universal format Flexible data mode Integrations Conclusion Great diversity of experimental strategies under the "umbrella" of CMDS:

Dimensions explored...

- MIR & visible: DOVE, TRSF
- ▶ fully visible: TREE, CARS
- frequency-frequency: 2DES/2DIR, "Resonant-(Raman/IR)"
- ▶ frequency-delay: TG, TA
- delay-delay: 3PE, MUPPETS

Or 3D.. or 4D: many possibilities not yet popular enough to name

Focus on the *pipeline* of CMDS:

- throughput
- quality
- diversity

Unlock the true potential of these instruments:

- automated calibration
- ▶ 2D, 3D, 4D...
- full diversity of possible hardware combinations, rapid development
 - powerful and flexible detection strategies
 - data processing tools

Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Гunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations

Supplement

Blaise Thompson

Multidimensional

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mod Integrations

o 1

Control and Calibration of Optical Parametric Amplifiers

Two strategies for CMDS

Blaise Thompson

Multidimensional

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Conclusion

Supplement

Two strategies for collecting multidimensional spectra:

Time Domain

- broadband pulses
- resolve spectra interferometrically
- ▶ fast (even single shot)
- robust

Frequency Domain

- narrowband pulses
- resolve spectra by tuning OPAs directly
- slow (lots of motor motion)
- fragile

Two strategies for CMDS

Frequency-Domain Multidimensional Spectroscopy

Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations Conclusion

Supplement

Frequency Domain

Figure:

Singh, A., Moody, G., Wu, S., Wu, Y., Ghimire, N., Yan, J., Mandrus, D., Xu, X. and Li, X. (2014). Coherent Electronic Coupling in Atomically Thin MoSe₂. Physical Review Letters, 112(21).

More bandwidth. Crucial for electronic states, band structure.

Bandwidth

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Conclusion

A lot more bandwidth... through the usage of OPAs

but how to make this strategy easy and robust?

Automation

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition

- Measurement enhancements
- Processing Universal format Flexible data mod Integrations Conclusion Supplement

Fully automated OPA tuning

- less than 1 hour per OPA
- can be scheduled during down time
- high quality from global analysis
- reproducible
- unambiguous representations automatically generated to assess health

Other calibration also needed, automated.

Acquisition

Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mod Integrations

Control of the MR-CMDS Instrument

The instrument

Multidimensional Spectroscopy Blaise Thompson

Funability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations

Conclusion

Supplement

Many kinds of component hardware

- monochromators
- delay stages
- filters
- OPAs
- \sim 10 settable devices, \sim 25 motors, multiple detectors.

Coordination problem.

Acquisition

Multidimensional

Blaise Thompson

Postino

Position

d1 (PMC) Doution.

d2 (PMC) Position

Acquisition

PyCMDS-unified software for controlling hardware and collecting data.

Acquisition

Capabilities of PyCMDS:

- reconfigures itself based on available hardware (modularity)
- multithreaded (up to 2x speed enhancement)
- queued acquisitions
 - long scans, short window of calibration—large duty cycle needed
 - shortly after implementation, two weeks of data collection yielded as many pixels as the previous three years
- extensibility
 - easy to add new hardware, new sensors, and new acquisition strategies
 - typical addition ~ 100 lines of new Python code

Multidimensional

Blaise Thompson

Acquisition

Extensibility

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Acquisition

Measurement

Processing Universal format Flexible data mode Integrations Conclusion

Supplement

Easy to add new hardware to PyCMDS

- In 2016, a new OPA was added to the picosecond system in one day.
- In 2017, we added multiple delay stages to the femtosecond system. Implementation took between one and four hours.

Once added, new hardware is immediately available for scanning in a multidimensional space with other hardware—no additional programming needed! Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data mod Integrations

Conclusion

Supplement

Measurement enhancements

Measurement enhancements

Digital processing

boxcar averager

digitize immediately

- cheaper, fewer points of failure
- more flexibility for different detector configurations
- shot-level statistics, processing sequences
 - configurable through simple python script
 - $\sim 3 \times$ faster

Multidimensional

Measurement enhancements

Dual chopping

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations Conclusion Supplement

	A	В	C	D
signal			\checkmark	
scatter 1		\checkmark	\checkmark	
scatter 2			\checkmark	\checkmark
other	\checkmark	\checkmark	\checkmark	\checkmark

$$I_{signal} = A - B + C - D$$

Isolate signal that depends on *all* indecent beams.

- no scatter
- no competing signals
- no voltage offset or room lights

Digital processing

Tunability

Measurement enhancements

Processing Universal format Flexible data mode Integrations Conclusion Supplement

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing

Universal format Flexible data mode Integrations

Supplement

Data processing

Processing

Blaise Thompson

Multidimensional

Tunability Acquisition

Measurement enhancements

Processing

Universal format Flexible data model Integrations Conclusion Supploment

Great! We have *lots* of CMDS data. Now what?

Working with multidimensional data is hard...

storage

- visualization
- post-processing
- fitting, modeling

and the dimensions are always changing!

WrightTools—software to process CMDS.

Universal format

Blaise Thompson

Multidimensional

Гunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations Conclusion

Supplement

WrightTools defines a universal file format for CMDS.

- store multiple multidimensional arrays
- metadata

Import data from a variety of sources.

- previous Wright Group acquisition software
- commercial instruments (JASCO, Shimadzu, Ocean Optics)
 - simulation packages

Flexible data model

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

Tunability

Measurement enhancements

Processing Universal format Flexible data model Integrations Conclusion

Flexibility to transform into any desired "projection" on component variables.

Integrations

Tunability Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Supplement

- WrightTools as a backend
- puts models and experiments on the same footing
- makes custom modeling work easier
 - more general-purpose modeling coming soon

Conclusion

Multidimensional Spectroscopy Blaise Thompson

Tunability

Measurement enhancements

Processing Universal format Flexible data model Integrations

Conclusion

Supplement

Acknowledgments

Wright Group

Multidimensional

Blaise Thompson

Conclusion

- Kyle Sunden
- Natalia Spitha
- Darien Morrow
- Jonathan Handali
- Nathan Neff-Mallon
- Kyle Czech
- Dan Kohler
- Erin Boyle
- Paul Hebert
- Skye Kain
- John
- (and more...)

Committee

- Kyoung-Shin Choi
- Randall Goldsmith
- Tim Bertram

UW-Madison Chemistry Department

- Rob McClain
- Pam Doolittle
- Bill Goebel
- Steve Myers

Friends and family

You, the audience! Questions?

TOPAS-C

Development of Frequency-Domain Multidimensional Spectroscopy Blaise Thompson

- Tunability Acquisition
- Measurement enhancements
- Processing Universal format Flexible data model Integrations
- Supplement

Two "stages", each with two motorized optics.

Tuning

Blaise Thompson

Multidimensional

- Гunability
- Acquisition
- Measurement enhancements
- Processing Universal format Flexible data model Integrations
- Conclusion
- Supplement

Tuning curves—recorded correspondence between motor positions and output color.

Exquisite sensitivity to alignment and lab conditions—tuning required roughly once a week.

Manual tuning is difficult...

- high dimensional motor space
- difficult to asses overall quality
- several hours of work per OPA (sometimes, an entire day for one OPA)

Preamp

Blaise Thompson

Tunability Acquisition

Measurement enhancements

Processing Universal format Flexible data mode Integrations

Supplement

Modular hardware model

Blaise Thompson

Multidimensional

Tunability

Acquisition

Measurement enhancement

Processing Universal format Flexible data mod Integrations

Conclusior

Supplement

Modular sensor model

Blaise Thompson

Multidimensional

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations

Conclusion

Supplement

Can have as many sensors as needed.

Each sensor contributes one or more channels.

Sensors with size contribute new variables (dimensions).

Domains of CMDS

Blaise Thompson

- Tunability
- Acquisition
- Measurement enhancements
- Processing Universal format Flexible data model Integrations
- conclusion
- Supplement

CMDS can be collected in two domains:

- time domain
- frequency domain

Blaise Thompson

Multidimensional

- Tunability
- Measurement enhancements
- Processing Universal format Flexible data model Integrations
- Supplement

Multiple broadband pulses are scanned in *time* to collect a multidimensional interferogram (analogous to FTIR, NMR).

A local oscillator must be used to measure the *phase* of the output.

This technique is...

- ► fast (even single shot)
- robust

pulse shapers have made time-domain CMDS (2DIR) almost routine.

Blaise Thompson

Multidimensional

Funability

Measurement enhancements

Processing Universal format Flexible data model Integrations

Supplement

In the Wright Group, we focus on *frequency* domain "Multi-Resonant" (MR)-CMDS.

Automated Optical Parametric Amplifiers (OPAs) are used to produce relatively narrow-band pulses. Multidimensional spectra are collected "directly" by scanning OPAs against each-other.

This strategy is...

- slow (must directly visit each pixel)
- fragile (many crucial moving pieces)

but! It is incredibly flexible.

Selection rules

Blaise Thompson

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations Conclusion

Supplement

MR-CMDS can easily collect data without an external local oscillator.

This means... [BOYLE]

Blaise Thompson

Multidimensional

Tunability

Acquisition

Measurement enhancements

Processing Universal format Flexible data model Integrations Conclusion

Supplement

At its core, PyCMDS does something very simple...

Set, wait, read, wait, repeat.

Everything is multi-threaded (simultaneous motion, simultaneous read).

 $\blacktriangleright\,$ decrease scan time by up to \sim 2×, more for complex experiments