\subsection{Relationship between $\chi^{(3)}$ and to non-linear pulse propagation constants} At low field intensities, there are familiar relations between the refractive index, $n_0$, the absorptivity coefficient, $\alpha$, the linear susceptibility, $\chi$, and the complex wave-vector, $k$: \begin{equation} \begin{split} k &= \frac{\omega n_0}{c} + i\frac{\alpha}{2} \\ &= \frac{\omega}{c} \sqrt{1 + \kappa \chi}, \end{split} \end{equation} where $\kappa= 1$ in the SI unit system and $\kappa=4\pi$ in the cgs unit system. $E_i$ is the electric field amplitude of pulse $m$, so $I_i = \frac{nc}{8\pi} |E_i|^2$. For higher fluences, there are three important phenomenologies, each based on a different optical constant: \begin{gather} k = \frac{\omega n^*}{c} + i \frac{\alpha^*}{2} \\ \alpha^* = \alpha + \beta I \\ n^* = n_0 + n_2 I \\ \chi^* = \left[ \chi^{(1)} + D \chi^{(3)} \left| E_2 \right|^2 \right] \end{gather} where $D$ is the permutation degeneracy factor:\cite{Maker1965} if a weak probe pulse is distorted by perturbations from a separate pump (as in transient absorption measurements), $D=6$, while if a lone probe pulse is intense enough to cause its own distortions (i.e. $E_2 = E_1$, as in $z$-scan measurements), $D=3$. %where $M_2 = \frac{1 - e^{-\alpha_0(\omega_2) \ell}}{\alpha_0(\omega_2) \ell}$ accounts for absorptive effects of the pump beam $E_2$. For small perturbations ($\left|\kappa D \chi^{(3)}|E_2|^2 \right| \ll |1+\kappa \chi^{(1)}|$), we can use a first-order Taylor expansion of $\mathbf{n}^*$ about $1 + \kappa \chi^{(1)}$ to write \begin{equation} \begin{split} \mathbf{n}^* &= \sqrt{1 + \kappa \left( \chi^{(1)} + D \chi^{(3)} |E_2|^2 \right)} \\ &\approx \mathbf{n} + \frac{1}{2 \mathbf{n}} \kappa D \chi^{(3)}|E_2|^2 \end{split} \end{equation} and in the common case (as is herein) where $\frac{\alpha c}{2\omega} \ll n_0$, $\mathbf{n}^{-1} \approx n_0^{-1}$. Ignoring terms independent of $I$, we arrive at \begin{equation} \begin{split} \left(n_2 + i\frac{c \beta}{2\omega}\right)I &= \frac{\kappa D \chi^{(3)}}{2 n_0} |E_2|^2 \\ &= \frac{4 \pi \kappa D \chi^{(3)}}{n_0^2 c} I \end{split} \end{equation} Eqns. \ref{eq:beta_to_chi} and \ref{eq:n2_to_chi} then follow with Eqn. \ref{eq:hyperpolarizability}. %Relations between non-linear constants and $\chi^{(3)}$ are summarized by: %\begin{gather} % \beta = \frac{8 \pi \kappa D \omega}{n_0^2 c^2} \text{Im}\left[ \chi^{(3)} \right] \\ % n_2 = \frac{4 \pi \kappa D }{n_0^2 c} \text{Re}\left[ \chi^{(3)} \right] %\end{gather} %From this it is easily seen that $\beta_\text{TA} = 2 \beta_\text{z-scan}$.