From 49de5fe553c2066520162cccd7d5dd586efc934d Mon Sep 17 00:00:00 2001 From: Blaise Thompson Date: Mon, 16 Oct 2017 21:05:48 -0500 Subject: structure --- .../PyCMDS/ideal axis positions/delay steps.tex | 99 ++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 software/PyCMDS/ideal axis positions/delay steps.tex (limited to 'software/PyCMDS/ideal axis positions/delay steps.tex') diff --git a/software/PyCMDS/ideal axis positions/delay steps.tex b/software/PyCMDS/ideal axis positions/delay steps.tex new file mode 100644 index 0000000..88029ea --- /dev/null +++ b/software/PyCMDS/ideal axis positions/delay steps.tex @@ -0,0 +1,99 @@ +% document +\documentclass[11 pt]{report} +\usepackage[letterpaper, margin=0.75in]{geometry} % 1 inch margins required +\usepackage{setspace} +\usepackage{afterpage} +\usepackage{color} +\usepackage{soul} +\usepackage{array} + +% text +\usepackage[utf8]{inputenc} +\setlength\parindent{0pt} +\setlength{\parskip}{1em} +\usepackage{enumitem} +\renewcommand{\familydefault}{\sfdefault} +\newcommand{\RomanNumeral}[1]{\textrm{\uppercase\expandafter{\romannumeral #1\relax}}} +\usepackage{etoolbox} +\AtBeginEnvironment{verse}{\singlespacing} +\AtBeginEnvironment{tabular}{\singlespacing} + +% graphics +\usepackage{graphics} +\usepackage{graphicx} +\usepackage{epsfig} +\usepackage{epstopdf} +\usepackage{etoc} +\usepackage{tikz} + +% math +\usepackage{amssymb} +\usepackage{amsmath} +\usepackage[cm]{sfmath} +\DeclareMathOperator{\me}{e} + +% hyperref +\usepackage[colorlinks=true, linkcolor=black, urlcolor=blue, citecolor=black, anchorcolor=black]{hyperref} +\usepackage[all]{hypcap} % helps hyperref work properly + +% date (http://tex.stackexchange.com/a/237251) +\def\twodigits#1{\ifnum#1<10 0\fi\the#1} +\def\mydate{\leavevmode\hbox{\the\year-\twodigits\month-\twodigits\day}} + +\begin{document} + +{\Huge{delay space stepping strategy}} + +Blaise Thompson \hfill last modified \mydate + +\dotfill + +Linear stepping is more expensive than it needs to be. + +Want to capture the dynamic range of the data as quickly as possible. + +Typically have exponential decay dynamics (perhaps multi-exponential)\dots we can capitalize on this. We want to take high resolution data at early delays and low resolution data at late delays. + +Of course, we don't want to throw away any information we would otherwise be entitled to. + +Conceptually we want to 'linearize' the data, so that each subsequent delay step accounts for the same change in signal. + +Signal goes exponentially... + +\begin{eqnarray} +S &=& \me^{-\frac{t}{\tau}} \\ +\log{(S)} &=& -\frac{t}{\tau} \\ +t &=& -\tau\log{(S)} +\end{eqnarray} + +So to step linearly in $t$, my step size has to go as $-\tau\log{(S)}$. + +We want to go linearly in signal, meaning that we want to divide $S$ into even sections. If $S$ goes from 0 to 1 and we choose to acquire $N$ points, + +\begin{eqnarray} +t_n &=& -\tau\log{\left(\frac{n}{N}\right)}. +\end{eqnarray} + +Note that $t_n$ starts at long times and approaches zero delay. So the first $t_1$ is the smallest signal and $t_N$ is the largest. + +Now we can start to consider realistic cases, like where $\tau$ is not quite known and where some other longer dynamics persist (manifested as a static offset). Since these values are not separable in a general system, I'll keep $S$ normalized between 0 and 1. + +\begin{eqnarray} +S &=& (1-c)\me^{-\frac{t}{\tau_{\mathrm{actual}}}} + c \\ +S_n &=& (1-c)\me^{-\frac{-\tau_{\mathrm{step}}\log{\left(\frac{n}{N}\right)}}{\tau_{\mathrm{actual}}}} + c \\ +S_n &=& (1-c)\me^{-\frac{\tau_{\mathrm{step}}}{\tau_{\mathrm{actual}}} \log{\left(\frac{N}{n}\right)}} + c \\ +S_n &=& (1-c)\left(\frac{N}{n}\right)^{-\frac{\tau_{\mathrm{step}}}{\tau_{\mathrm{actual}}}} + c \\ +S_n &=& (1-c)\left(\frac{n}{N}\right)^{\frac{\tau_{\mathrm{step}}}{\tau_{\mathrm{actual}}}} + c +\end{eqnarray} + + + +\begin{figure}[!htb] + \centering + \includegraphics[scale=0.5]{"out"} + \caption{} +\end{figure} + + + +\end{document} \ No newline at end of file -- cgit v1.2.3