The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety Electrocutic Fire

Examples

Conclusion

The Role of Electronics Shops

In a Research Environment

Blaise Thompson

University of Wisconsin-Madison

2024-04-10

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Fire

Examples

Conclusion

UW-Madison Department of Chemistry

What is a research electronics shop?

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutior Fire Examples

Conclusion

UW-Madison Department of Chemistry

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

- - .

three shops:

- machine
 - four full time staff
 - specialty focus on pump repair

glass

two full time staff

electronics

- two full time staff
- four student workers

UW-Madison Department of Chemistry

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Example

Conclusion

UW-Madison Department of Chemistry

Electronics at UW-Madison Chemistry

- here for as long as anyone can remember
 - at least 50 years
- historically much larger group
 - more than seven full time staff, at peak
- construct, repair, assist

III

Research

UW-Madison Department of Physics

Blaise Thompson	UNIVERSITY of WISCONSIN-MADISON : physics	CONTACT COURSES JOBS VISIT Log in							
Research Shops Custom Research Electronics	Department of Physics Research, teaching and outreach in Physics at UW-Madison	Q Search							
Appliance Maintenance Safety	Grad → Undergrad → Research People → News & Events →	Climate & Outreach Resources ~ Giving Diversity							
	Home / Electronics Shop								
	Electronics Shop								
Â	The Physics Electronics Shop does not sell parts to the public. We don't do repairs for the public.								

1150 University Ave. Madison, WI 53706 Phone: (608) 262-0527

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocuti

Fire

•

Conclusion

Find Info For 👻	Apply	News	President	Shop	Visit	Give	Emergency	Q
Department of Chemistry								
≡ Menu								
Home > Jonathan Amy Facility for Chemical	Instrument	tation >	Jonathan Amy	Facility fo	or Chemic	al Instrur	nentation	

AMY FACILITY HOME

Amy Facility Staff			
Requests and	*		
Projects	•		
Chemistry Research Facilities	•		

Jonathan Amy Facility for Chemical Instrumentation

The Amy Instrumentation Facility (JAFCI) is dedicated to the fusion of engineering expertise with the quest for scientific knowledge to further research and instructional efforts in the Department of Chemistry and School of Chemical Engineering at Purdue University. Our team of scientists and engineers provide assistance in the design / construction of specialized instrumentation not commercially available along with repair / modification of commercial systems.

Purdue Amy Facility

The Role of

Blaise Thompson

Research Shops

UNIVERSITY of WASHINGTON

DEPARTMENT OF CHEMISTRY

College of Arts & Sciences

8

(Q

University of Washington

MENU =

/ Resources / Services

Electronics Shop

The Electronics Shop (Bagley Hall room 74) supports graduate teaching activities and research.

All staff are skilled in design, development, construction, repair and maintenance of scientific apparatus and

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocut

Fire

.

Conclusion

🕎 University of Colorado Boulder

Chemical and Biological Engineering

Instrument Shop

For over 16 years the professional research Instrument Shop at the Department of Chemical and Biological Engineering has provided mechanical and electrical design and fabrication services at CU Boulder. The experienced staff provides solutions for instructional and research needs for any department or college at highly competitive rates. The Instrument Shop is collectively comprised of a machine shop and electronics shop, both of which are located in the basement level of the Jennie Smoly Caruthers Biotechnology Building.

In short, the shop's primary mission is to help the labs and researchers get the custom tools and instruments they need to successfully complete their projects, from problem to solution. Contact the shop staff with the details of your project.

Tools, components, and instruments

Instrument Shop Equipment and Products

University of Colorado Boulder

Instrument Shop Staff

Dragan Mejic Shop Manager, Instrument Maker / Fabricator dragan.mejic@colorado.edu (303) 735-5901

Deepak Dileepkumar Electronics Engineer deepak.dileepkumar@colorado.edu (303) 492-8125

Dana Hauschulz Electronics Engineer dana.hauschulz@colorado.edu Q

≡Menu

The Role of **Blaise Thompson**

Research Shops

University of Pittsburgh

Electronics Shop

Electronics Shop

Electronics Shop Personnel

Contact

David Emple

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Examples

Conclusion

Indiana University Bloomington

THE COLLEGE OF ARTS + SCIENCES

Department of **Chemistry**

RESEARCH PEOPLE GRADUATE UNDERGRADUATE EVENTS

S + DIVERSITY + TS CLIMATE

ABOUT

INTERNAL

GIVE NOW

Alumni Journal →

Department of Chemistry | People | Engineering & Technical Groups | Electronic Instrument Services

People

Indiana University Bloomington

UNC Chapel Hill

≡

The Role of Electronics Shops

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Examples

Conclusion

DUNC COLLEGE OF ARTS AND SCIENCES

Electronics

Location

A Room C249, Kenan Laboratories, second floor.

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Conclusion

Core Facilities

Instrument Design and Fabrication

ASU Core Research Facilities

Home / Electronics

Electronics

Electronics

Arizona State University

and a state of the state of the

=

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Conclusion

Stanford University

✓ FOR ALL YOUR TOOL ENABLES, RESERVATIONS, AND PURCHASES:

NEMO: FEB 1 2024!

Stanford Nanofabrication Facility

Stanford

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

Conclusion

Department of Chemistry

Electronics Shop

Brown

۹ 🔳

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

Conclusion

Custom electronics for research?

Electronics as Research

Blaise Thompson

The Role of

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Electronics development has a key role to play in higher education & cutting-edge research.

- Iowered cost
- greater reproducibility
- automation, high throughput
- creativity and niche application

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Fire

Conclusion

ORIGINAL RESEARCH published: 10 July 2020 doi: 10.3389/fpls.2020.01015

The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products

Prabu Ravindran^{1,2*}, Blaise J. Thompson³, Richard K. Soares^{1,2} and Alex C. Wiedenhoeft^{1,2,4,5}

¹ Center for Wood Anatomy Research, USDA Forest Products Laboratory, Madison, WI, United States, ² Department of Botany, University of Wisconsin, Madison, WI, United States, ³ Department of Chemistry, University of Wisconsin, Madison, WI, United States, ⁴ Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States, ⁶ Departamento de Ciências Biológicas (Botánica), Universidade Estadual Paulista, Botucatu, Brazil

Forests, estimated to contain two thirds of the world's biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable

XyloTron

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Blaise Thompsor

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Blaise Thompsor

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio Fire

Examples

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

- Safety Electrocution Fire Examples
- Conclusion

XyloTron

Charcoal identification confusion matrix

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Fire

Conclusion

Review of Scientific Instruments	ARTICLE	scitation.org/journal/rsi
Scientific Instruments		solution.org/journalitist

Multichannel gas-uptake/evolution reactor for monitoring liquid-phase chemical reactions

Cite as: Rev. Sci. Instrum. 92, 044103 (2021); doi: 10.1063/5.0043007 Submitted: 5 January 2021 • Accepted: 28 March 2021 • Published Online: 15 April 2021	View Online	Export Citation	CroseMark
Chase A. Salazar. D Blaise J. Thompson. D Spring M. M. Knapp. D Steven R. My	ers. and Shan	non S. Stał	ם ^(a)

AFFILIATIONS

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719, USA

^{a)}Author to whom correspondence should be addressed: stahl@chem.wisc.edu

ABSTRACT

Gas Uptake

Gas Uptake

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Example

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Photoreactor

The Role of Electronics Shops

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Letter

pubs.acs.org/OrgLett

Versatile Open-Source Photoreactor Architecture for Photocatalysis Across the Visible Spectrum

Philip P. Lampkin, Blaise J. Thompson, and Samuel H. Gellman*

Organic Letters

ABSTRACT: Adoption of commercial photoreactors as standards for photocatalysis research could be limited by high cost. We report the development of the Wisconsin Photoreactor Platform (WPP), an opensource photoreactor architecture potentially suitable for general adoption. The WPP integrates inexpensive commercial components and common high-intensity LEDs in a 3D-printed enclosure. Dimensions and features of WPP reactors can be readily varied and configurations easily reproduced. WPP performance is evaluated using literature transformations driven by light of disparate wavelengths.

oublished article

20:33:38 (UTC).

÷

2024 a atelv

lin

The Role of

Photoreactor

Photoreactor

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

- Safety Electrocutior Fire
- Examples
- Conclusion

Photoreactor

The Role of Electronics Shops

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

- Safety Electrocution Fire Examples
- Conclusion

Blaise Thompsor

Research Shop

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Photoreactor

Oscillator

The Role of Electronics Shops

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Examples

Conclusion

April 1, 2024 at 20:39:16 (UTC). to legitimately share published article Iournal of the American Society for MSS Mass Spectrometry

pubs.acs.org/jasms

ACS Partner Journal

Research Article

The Wisconsin Oscillator: A Low-Cost Circuit for Powering Ion Guides, Funnels, and Traps

Steven J. Kregel,* Blaise J. Thompson, Gilbert M. Nathanson, and Timothy H. Bertram

ACCESS

III Metrics & More

E Article Recommendations

Supporting Information

ABSTRACT: In this work, we present the Wisconsin Oscillator, a small, inexpensive, low-power circuit for powering ion-guiding devices such as multipole ion guides, ion finnels, active ionmobility devices, and non-mass-selective ion traps. The circuit can be constructed for under \$30 and produces two antiphase RF waveforms of up to $250 V_{p-p}$ in the high kilohetrz to low megahetrz range while drawing less than 1 W of power. The output amplitude is determined by a 0–65. VDC drive voltage, and voltage amplification is achieved using a resonant LC circuit, negating the need for a large RF transformer. The Wisconsin Oscillator automatically oscillates with maximum amplitude at the resonant frequency defined by the onburd canceitor inductors.

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Low Cost Oscillator

High Voltage RF

Ion Guiding Devices

Oscillator

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Oscillator

Krishna

Blaise Thompson

Research Shop

Custom Research Electronics

Appliance Maintenance

- Safety Electrocution Fire Examples
- Conclusion

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Entering tes

Conclusion

Chemistry 860: Selected Topics in Physical Chemistry Instrument Design & Fabrication Spring 2024

General Course Information

*Course Subject, Number and Title CHEM 860 — SELECTED TOPICS IN PHYSICAL CHEMISTRY

*Credits 2 credits

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Examples

Conclusion

Chemistry 728 Electronics for Chemical Instrumentation 3 credits Spring 2024

Course URL: CANVAS

Dr. Rob McClain office: 7446 Chemistry e-mail: mcclain@chem.wisc.edu

Dr. Blaise Thompson office: S307 Chemistry e-mail: <u>blaise.thompson@wisc.edu</u>

Pre-requisites: graduate standing

office hours: By appointment phone: 608-262-5615

office hours: By appointment phone: 608-263-2573

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

- Safety Electrocution Fire
- Conclusion

Workspace

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

Conclusion

Electronics: More Accessible than Ever

Electronics: More Accessible than Ever

The Role of Electronics Shops

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Blaise Thompson

Research Shop

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Electronics: More Accessible than Ever

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Electronics: More Accessible than Ever

Open Source Hardware

Electronics Shops Blaise Thompson

The Role of

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocutio

Fire

Examples

Conclusion

PLOS BIOLOGY

ESSAY

Open hardware: From DIY trend to global transformation in access to laboratory equipment

Tobias Wenzel 10*

Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Macul, Región Metropolitana, Chile

* tobias.wenzel@uc.cl

Abstract

Open hardware solutions are increasingly being chosen by researchers as a strategy to improve access to technology for cutting-edge biology research. The use of DIY technology is already widespread, particularly in countries with limited access to science funding, and is catalyzing the development of open-source technologies. Beyond financial accessibility, open hardware can be transformational for the access of laboratories to equipment by

Open Source Hardware

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Fire

Examples

Conclusion

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocu

Fire

. . .

Repair and maintenance of research equipment.

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Examples

Conclusion

One or two pieces of equipment per day.

About fifty research groups.

One employee...

Repair

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Examples

Conclusion

Common research appliances

hotplates

- stirplates
- shakers
- ovens
- rotovaps
- UV lamps
- sonicators
- balances
- chillers

Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocuti

Fire

Conclusion

Irreplaceable

Operational continuity

Repair

Rotovap

Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety Electrocution

Example

Conclusion

Hotstir

Research Shop

Custom Researc Electronics

Appliance Maintenance

Safety

Electroc

Examp

Conclusion

Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety Electrocutio

Examples

Conclusion

Heating Elements

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Amber Bartz Chemistry Electronics Shop afbartz@wisc.edu

Check out Amber's poster presentation: What Researchers Should Know When Powering Lab Equipment

Amber Bartz

The Role of Electronics Shops Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety

Electrocution Fire Examples

Conclusion

Electrical Safety

as Viewed from the Shop

Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety

Electrocution Fire Examples

Conclusion

Safety

Let's think about safety implications!

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocution Fire Examples

Conclusion

I'm not a safety expert... talking at CSHEMA is a bit intimidating.

I'm glad you are dedicating a symposium to electrical safety.

I have no idea how to think about certification ...

I hope we can work together.

Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety

Electrocution Fire Examples

Conclusion

Cutting-edge researchers will inevitably customize/create electronic circuits.

Safetv

Hopefully, the electronics shop can be a place to do this work under professional supervision!

We don't have the time or the staff to look over every shoulder... ...instead, we try to convince researchers that they have a professional responsibility to care about electrical safety.

Blaise Thompson

Custom Research Electronics

Appliance Maintenance

Safety

Electrocution Fire Examples

Conclusion

Two categories of electrical hazard:

- electrocution
- fire

Current Kills

Electronics Shops Blaise Thompson

The Role of

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Relatively small amounts of current can be very dangerous!

- 1 mA barely perceptible
- 16 mA maximum current an average person can grasp and "let go"
- 20 mA paralysis of respiratory muscles
- > 100 mA ventricular fibrillation threshold
- 2000 mA cardiac standstill and internal organ damage
- 15000 mA fuse / breaker opens circuit

A typical LED draws 20 mA.

Fuses and breakers will NOT protect you from death by electrocution!

WORKER DEATHS BY ELECTROCUTION A Summary of NIOSH Surveillance and Investigative Findings May 1998

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Electrocution Fire Examples

Conclusion

Current and Voltage

Current and voltage are related by Ohm's Law.

V = IR

Larger voltages drive more current through your body.

Current and Voltage

Electronics Shops

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

"Typical" resistance across the human body: as low as $10k\Omega$. Solve for voltage driving 10 mA

$$V = 10 \text{mA} \times 10 \text{k}\Omega$$
$$V = 100 \text{V}$$

Every device plugged into the wall is at least 120V.

Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Electrocution Fire Examples

Conclusion

Most resistance is at the skin.

Resistance decreases significantly if your skin is wet.

Wet and Dry

Typical Voltages

The Role of Electronics Shops

Blaise Thompson

- Research Shops
- Custom Researc Electronics
- Appliance Maintenance
- Safety
- **Electrocution** Fire Examples
- Conclusion

Treat anything above 30 V as an electrocution hazard.

- 5 V USB power supply
- 120 V typical lab appliance
- 120 V typical vacuum roughing pump
- ▶ 50 to 200 V gel electrophoresis
- 1000 V piezoelectric actuators
- 1000 V photomultipliler tubes
- 3000 V electron / ion multipliers
- 15000 V X-Ray sources

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Sarety Electrocution Fire Examples

Conclusion

Typical Voltages

Voltage is not necessarily dangerous,

Know the current rating!

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Electrocution Fire Examples

Conclusion

Designed specifically for shock protection.

Ensure that no current is leaking out of circuit. Sensitive to a few mA.

Will trip if used with large inductive loads (motors).

Prone to weaken over time-replaced every ten years.

Liquids and Shock Hazard

Electronics Shops Blaise Thompson

The Role of

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution

Fire

Conclusion

Avoid mixing water and electricity.

- Minimize the use of electrical equipment in cold rooms or other areas where condensation is likely. If equipment must be used in such areas, mount the equipment on a wall or vertical panel.
- If water or a chemical is spilled onto equipment, shut off power at the main switch or circuit breaker and unplug the equipment.

Blaise Thompson

Custom Research Electronics

Appliance Maintenance

Safety Electrocution

Fire

Conclusion

When an electrical circuit fails it can rapidly cause sparks and get very hot.

When combined with chemicals, this situation can become explosive.

Even low voltage circuits are capable of getting very hot. Power is product of voltage and current.

Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety

Electrocution

Fire

Conclusion

Recommendations for Avoiding Electrical Fire

Ensure that circuits are not overloaded.

- Recognize which devices are drawing a lot of power.
 - Heaters, ovens
 - Pumps
 - Motors
- Be aware which devices share a circuit.
- Never use extension cords or power strips.

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocutio

Fire

Conclusion

Recommendations for Avoiding Electrical Fire

Use good housekeeping.

- Do not crowd multiple appliances into small spaces.
- Regularly inspect power cords for damage.
- ► Keep appliances clean, free from chemical buildup.
- Dispose of broken appliances quickly.

Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocution

Examples

Conclusion

Recommendations for Avoiding Electrical Fire

Protect against catastrophic failure.

- Ensure that devices have fuses and/or breakers.
- ▶ When designing heating systems, consider incorporating thermal fuses.
- Ground exposed metal.

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety

Electrocution

Examples

Conclusion

Some examples!

Blaise Thompson

Research Shop

Custom Researc Electronics

Appliance Maintenance

Safety Electrocution Fire

Examples

Conclusion

Wiring Mess

Blaise Thompsor

Research Shop

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

Examples

Conclusion

Chassis Ground
Blaise Thompson

Research Shops

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Making good ground connections.

- Clamps, terminals, straps.
- Don't assume touching implies conductive.

Chassis Ground

Electrocution Hazard

Research Shop

Custom Researc Electronics

Appliance Maintenance

Safety Electrocution Fire

Examples

Blaise Thompsor

Research Shop

Custom Researc Electronics

Appliance Maintenance

Safety Electrocutior Fire

Examples

Conclusion

SE

Electrocution Hazard

Electrocution Hazard

The Role of Electronics Shops

Blaise Thompsor

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire

Examples

Fire Hazard

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

NEMA 5-15 120 V Up to 15 amps, but many cables 10 amps!

Cable Ratings

Fire Hazard

Blaise Thompson

Research Shop

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Blaise Thompson

Research Shop

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

- Bond metal containers together when working with flammable gasses.
- Good idea to earth flammables cabinets

Spark Hazard

Blaise Thompson

Research Shop

Custom Researcl Electronics

Appliance Maintenance

Safety Electrocutio

Examples

Conclusion

Thermal cutoff

Article Talk

From Wikipedia, the free encyclopedia

"Thermal protection" redirects here. For protection from external heat, see thermal insulation.

This article **needs additional citations for verification**. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.

Find sources: "Thermal cutoff" – news • newspapers • books • scholar • JSTOR (May 2017) (Learn how and when to remove this template message)

A **thermal cutoff** is an electrical safety device (either a thermal fuse or thermal switch) that interrupts electric current when heated to a specific temperature. These devices may be for one-time use (a thermal fuse), or may be reset manually or automatically (a thermal switch).

An assortment of thermal fuses 5

Thermal fuse [edit]

A **thermal fuse** is a cutoff which uses a one-time fusible link. Unlike a thermal switch which may automatically reset itself when the temperature drops, the thermal fuse is more like an

Thermal Cutoff

Create account Log in •••

文A 10 languages ~

Read Edit View history Tools ~

Q

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

BNC 500 V Typically 1 Amp Use SHV connectors for high voltage (!!!)

Cable Ratings

Interlocks

Blaise Thompson

Research Shop

Custom Researc Electronics

Appliance Maintenance

Safety Electrocutior Fire

Examples

Interlocks

Blaise Thompson

Research Shops

Custom Researc Electronics

Appliance Maintenance

Safety Electrocution Fire

Examples

Blaise Thompson

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Academic electronics shops contain staff working with researchers to best utilize electronic research equipment.

Shop staff are professionals who care about electrical safety.

Your institution might have a research electronics shop-consider reaching out!

Blaise Thompson

Research Shops

Custom Research Electronics

Appliance Maintenance

Safety Electrocution Fire Examples

Conclusion

Blaise Thompson Chemistry Electronics Shop blaise.thompson@wisc.edu

Love to learn about research & electronics. Let's chat!

Questions?

Thank You